垃圾回收器使用一组称为 GC 线程的线程来执行回收工作。有时 JVM 可能会分配过多或过少的 GC 线程。本文将讨论 JVM 为什么会出现这种情况、其影响以及可能的解决方案。
进行线程转储分析来确定应用程序的 GC 线程数量:
还可通过 JMX(Java Management Extensions)或VisualVM、JConsole 等查看 GC 线程数量。
JVM 参数手动调整 GC 线程数:
-XX:ParallelGCThreads=n
:设置垃圾回收器并行阶段使用的线程数量-XX:ConcGCThreads=n
:控制垃圾回收器并发阶段使用的线程数量注意这些参数适用于并行垃圾回收器(如 ParallelGC 和 ParallelOldGC)和并发垃圾回收器(如 G1GC)。
根据服务器或容器中的 CPU 数量自动计算。
-XX:ParallelGCThreads 默认值
:在 Linux/x86 系统上,默认值公式:if (处理器数量 <=8) {
返回处理器数量;
} else {
返回 8 + (处理器数量 - 8) * (5/8);
}
因此,如果 JVM 运行在拥有 32 个处理器的服务器上,那么 ParallelGCThread
的值将是 23。
-XX:ConcGCThreads 默认值
:公式:max((ParallelGCThreads+2)/4, 1)
因此,如果 JVM 运行在 32 个处理器的服务器上:
ParallelGCThread
的值将是 23(即 8 + (32 – 8) * (5/8))ConcGCThreads
的值将是 6(即 max(25/4, 1))JVM 可能在你不知情下分配过多 GC 线程。因为默认 GC 线程数量是根据服务器或容器中的 CPU 数量自动确定。
如在拥有 128 个 CPU 机器,JVM 可能会为垃圾回收的并行阶段分配大约 80 个线程,并为并发阶段分配大约 20 个线程,总计 100 个 GC 线程。
如你在这台 128 CPU 的机器上运行多个 JVM,每个 JVM 可能会分配大约 100 个 GC 线程。这会导致资源的过度使用,因为所有这些线程都在争夺相同的 CPU 资源。这种情况在容器化环境中特别常见,因为多个应用程序共享相同的 CPU 核心,导致 JVM 分配的 GC 线程超过所需数量,从而降低整体性能。
JVM 可能根据容器分配的 CPU 资源来计算 GC 线程数量,而非物理机器的 CPU 数量。这可能导致在共享 CPU 资源的容器环境中分配过多的 GC 线程。
虽然 GC 线程对高效的内存管理非常重要,但过多 GC 线程可能会导致 Java 应用程序性能问题。
当 GC 线程过多时,操作系统需要频繁地在这些线程之间切换,导致上下文切换的开销增加,更多的 CPU 时间花在管理线程上,而不是执行应用程序代码,结果应用程序可能会明显变慢。
每个 GC 线程都会消耗 CPU 资源,过多的线程同时活跃时,它们会争夺 CPU 时间,减少应用程序的主要任务的处理能力,特别是在 CPU 资源有限的情况下。
过多的 GC 线程会增加内存资源争用,多个线程同时访问和修改内存会导致锁争用,从而进一步降低应用程序性能。
过多的 GC 线程会使垃圾回收过程低效,导致更长的 GC 暂停时间,应用程序会被暂时中断,延长的暂停时间可能会造成明显的延迟或卡顿。此外,更多的时间花在垃圾回收上而不是处理请求,应用程序的整体吞吐量会下降,从而影响其在高负载下的扩展性和性能。
由于过多线程导致 GC 活动增加,响应用户请求或处理任务的延迟也会增加,这对需要低延迟的应用程序来说尤其严重,例如实时系统或高频交易平台。
增加 GC 线程到一定程度后,并不会继续提高性能,反而会出现边际效益递减,管理这些线程的开销超过了更快垃圾回收的好处,这会导致应用性能下降。
过少的 GC 线程同样会给 Java 应用程序带来问题。原因如下:
若应用程序因 GC 线程数量不当导致性能问题,可通过 JVM 参数手动调整 GC 线程数:
-XX:ParallelGCThreads=n
-XX:ConcGCThreads=n
在生产环境中应用这些更改前,先研究应用程序的 GC 行为,收集并分析 GC 日志。根据分析结果,判断当前线程设置是否导致性能瓶颈,然后进行相应调整。
务必在受控环境中测试这些更改,以确保它们的确能改善性能,然后再应用于生产环境。调整 GC 线程数量时,应结合应用程序的实际工作负载、内存使用情况和硬件配置进行综合考虑。此外,可以使用工具如 GCViewer 来分析 GC 日志,以更好地理解 GC 行为并进行优化。
平衡 GC 线程数量对 Java 应用程序的平稳运行至关重要。通过仔细监控和调整这些设置,可以避免潜在的性能问题,并保持应用程序的高效运行。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。