前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >基础的点云转换

基础的点云转换

作者头像
梦笔生花
发布2024-09-25 08:58:40
930
发布2024-09-25 08:58:40
举报
文章被收录于专栏:防止网络攻击

对于点云处理而言,最简单也逃不过的就是点云转换了,我们就从点云转换开始,来一步步完成点云加速的学习。点云基础转换是3D点云处理中的一个重要步骤。它的主要目的是将点云从一个坐标系转换到另一个坐标系中,通常是为了方便后续处理或者显示。在实际应用中,点云基础转换通常包括平移、旋转、缩放等操作。这里对应了pcl::transformPointCloud这种方法

1. CUDA与Thrust

使用CUDA和Thrust进行点云基础转换可以大大提高处理效率,特别是当点云数据量较大时。CUDA是一种并行计算架构,可以利用GPU的计算能力来加速计算,而Thrust是CUDA的C++模板库,提供了许多与STL相似的算法和容器,可以方便地在CUDA中使用。

在点云基础转换中,最基本的操作是平移,即将点云沿x、y、z三个方向上移动一定的距离。这可以通过遍历点云中每个点,然后将其坐标加上平移向量来实现。使用CUDA和Thrust可以将这个操作并行化,提高处理效率。

另一个常见的操作是旋转,即将点云绕x、y、z三个方向上旋转一定的角度。这可以通过矩阵乘法来实现。具体来说,我们可以先将旋转矩阵乘以点云中每个点的坐标,然后将结果保存到一个新的点云中。同样,使用CUDA和Thrust可以将这个操作并行化,提高处理效率。

2. CUDA代码完成加速

下面这段代码是一个CUDA kernel函数,用于将点云数据按照给定的转换矩阵进行变换。该函数会在每个线程索引小于点云数的情况下,通过矩阵乘法将输入的点云数据进行转换,并将转换后的数据存储到原始的点云数据中。函数中使用了CUDA的并行计算能力,通过设置线程块和线程数,使得每个线程可以并行地处理一个点云数据的转换,从而加快了程序的运行速度。函数中也包括了同步操作,确保所有的线程都完成了转换操作后才能继续执行下一步操作。

代码语言:javascript
复制
__global__ void kernel_cudaTransformPoints(pcl::PointXYZ *d_point_cloud, int number_of_points, float *d_matrix)
{
	int ind = blockIdx.x * blockDim.x + threadIdx.x; // 线程索引

	if (ind < number_of_points) // 线程索引小于点云数
	{
		float vSrcVector[3] = {d_point_cloud[ind].x, d_point_cloud[ind].y, d_point_cloud[ind].z};						  // 点云数据
		float vOut[3];																									  // 点云数据
		vOut[0] = d_matrix[0] * vSrcVector[0] + d_matrix[4] * vSrcVector[1] + d_matrix[8] * vSrcVector[2] + d_matrix[12]; // 矩阵乘法,用于计算点云数据的转换
		vOut[1] = d_matrix[1] * vSrcVector[0] + d_matrix[5] * vSrcVector[1] + d_matrix[9] * vSrcVector[2] + d_matrix[13];
		vOut[2] = d_matrix[2] * vSrcVector[0] + d_matrix[6] * vSrcVector[1] + d_matrix[10] * vSrcVector[2] + d_matrix[14];

		d_point_cloud[ind].x = vOut[0]; // 将转换后的点云数据存储到原来的点云数据中
		d_point_cloud[ind].y = vOut[1];
		d_point_cloud[ind].z = vOut[2];
	}
}

cudaError_t cudaTransformPoints(int threads, pcl::PointXYZ *d_point_cloud, int number_of_points, float *d_matrix)
{
	kernel_cudaTransformPoints<<<number_of_points / threads + 1, threads>>>(d_point_cloud, number_of_points, d_matrix); // 设置线程块和线程数,并调用kernel来完成transform转换

	cudaDeviceSynchronize(); // 同步
	return cudaGetLastError();
}

下面我们来看看如何调用这部分代码,这部分代码定义了一个名为CCudaWrapper的类,该类包含了一个名为transform的函数,用于对点云进行变换。该函数的输入参数包括一个点云对象和一个4x4的变换矩阵。该函数首先设置了设备为第一个设备(cudaSetDevice(0)),然后通过调用getNumberOfAvailableThreads函数获取可用的线程数。接着,该函数将变换矩阵数据从主机复制到设备,并为点云数据和变换矩阵数据分配了设备内存。然后,调用了上述的cudaTransformPoints的函数,将变换应用于点云。最后,该函数将变换后的点云数据从设备复制到主机,并释放了设备内存。该函数的返回值为布尔值,表示变换是否成功。这里支持我们可以传pcl::PointCloud<pcl::PointXYZ>

3. Thrust代码完成加速

这段代码实现了一个基于Thrust算法库的点云变换函数TransformPointCloud。该函数接受一个变换矩阵和一个原始的点云数据,返回经过变换后的点云数据。变换过程中使用了PointCloudTransformFunctor结构体作为变换函数,其中对每个点进行了仿射变换。函数中使用了Thrust算法库中的transform函数,对每个点进行变换,并将结果存储在transformed_points中,最终将变换后的点云数据返回。这段代码没有使用CUDA,而是完全依赖于Thrust算法库实现的。

代码语言:javascript
复制
// 纯thrust算法,不使用cuda。对应了上面的transform内容
#pragma once
#include <pcl/common/transforms.h>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <stdio.h>
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <thrust/random.h>
#include <thrust/scan.h>
#include <thrust/sequence.h>
#include <thrust/transform.h>

#include <iostream>
#include <iterator>

#include <pcl/point_types.h>
#include <thrust/device_vector.h>

// 定义点云结构体
struct PointXYZ
{
	float x, y, z;
};

struct PointCloudTransformFunctor
{
	float *transform;

	PointCloudTransformFunctor(float *transform)
		: transform(transform) {}

	__host__ __device__ pcl::PointXYZ operator()(const pcl::PointXYZ &pt) const

	{
		PointXYZ transformed_pt;

		transformed_pt.x = transform[0] * pt.x + transform[1] * pt.y +
						   transform[2] * pt.z + transform[3];
		transformed_pt.y = transform[4] * pt.x + transform[5] * pt.y +
						   transform[6] * pt.z + transform[7];
		transformed_pt.z = transform[8] * pt.x + transform[9] * pt.y +
						   transform[10] * pt.z + transform[11];

		return transformed_pt;
	}
};

thrust::device_vector<PointXYZ>
TransformPointCloud(float *transform,
					const thrust::device_vector<PointXYZ> &orig_points)
{
	thrust::device_vector<PointXYZ> transformed_points;
	transformed_points.resize(orig_points.size());
	thrust::transform(orig_points.begin(), orig_points.end(),
					  transformed_points.begin(), transformed_points.begin(),
					  PointCloudTransformFunctor(transform));

	return transformed_points;
}

4. 结果显示

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-09-24,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. CUDA与Thrust
  • 2. CUDA代码完成加速
  • 3. Thrust代码完成加速
  • 4. 结果显示
相关产品与服务
GPU 云服务器
GPU 云服务器(Cloud GPU Service,GPU)是提供 GPU 算力的弹性计算服务,具有超强的并行计算能力,作为 IaaS 层的尖兵利器,服务于生成式AI,自动驾驶,深度学习训练、科学计算、图形图像处理、视频编解码等场景。腾讯云随时提供触手可得的算力,有效缓解您的计算压力,提升业务效率与竞争力。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档