前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【AI大模型】BERT模型:揭秘LLM主要类别架构(上)

【AI大模型】BERT模型:揭秘LLM主要类别架构(上)

作者头像
小言从不摸鱼
发布2024-09-26 09:06:37
1050
发布2024-09-26 09:06:37
举报
文章被收录于专栏:机器学习入门

学习目标 🍀 了解LLM主要类别架构. 🍀 掌握BERT模型原理

🍔 LLM主要类别

LLM本身基于transformer架构。自2017年,attention is all you need诞生起,原始的transformer模型为不同领域的模型提供了灵感和启发。基于原始的Transformer框架,衍生出了一系列模型,一些模型仅仅使用encoder或decoder,有些模型同时使用encoder+decoder。

LLM分类一般分为三种:自编码模型(encoder)、自回归模型(decoder)和序列到序列模型(encoder-decoder)。

本文章我们主要介绍自编码模型。


🍔 自编码模型

自编码模型 (AutoEncoder model,AE) 模型,代表作BERT,其特点为:Encoder-Only, 基本原理:是在输入中随机MASK掉一部分单词,根据上下文预测这个词。AE模型通常用于内容理解任务,比如自然语言理NLU中的分类任务:情感分析、提取式问答。


2.1 代表模型 BERT

BERT是2018年10月由Google AI研究院提出的一种预训练模型.

  • BERT的全称是Bidirectional Encoder Representation from Transformers.
  • BERT在机器阅读理解顶级水平测试SQuAD1.1中表现出惊人的成绩: 全部两个衡量指标上全面超越人类, 并且在11种不同NLP测试中创出SOTA表现. 包括将GLUE基准推高至80.4% (绝对改进7.6%), MultiNLI准确度达到86.7% (绝对改进5.6%). 成为NLP发展史上的里程碑式的模型成就.

2.1.1 BERT的架构

总体架构: 如下图所示, 最左边的就是BERT的架构图, 可以很清楚的看到BERT采用了Transformer Encoder block进行连接, 因为是一个典型的双向编码模型.

从上面的架构图中可以看到, 宏观上BERT分三个主要模块:

  • 最底层黄色标记的Embedding模块.
  • 中间层蓝色标记的Transformer模块.
  • 最上层绿色标记的预微调模块.
2.1.2 Embedding模块

BERT中的该模块是由三种Embedding共同组成而成, 如下图

  • Token Embeddings 是词嵌入张量, 第一个单词是CLS标志, 可以用于之后的分类任务.
  • Segment Embeddings 是句子分段嵌入张量, 是为了服务后续的两个句子为输入的预训练任务.
  • Position Embeddings 是位置编码张量, 此处注意和传统的Transformer不同, 不是三角函数计算的固定位置编码, 而是通过学习得出来的.
  • 整个Embedding模块的输出张量就是这3个张量的直接加和结果.

2.1.3 双向Transformer模块

BERT中只使用了经典Transformer架构中的Encoder部分, 完全舍弃了Decoder部分. 而两大预训练任务也集中体现在训练Transformer模块中.


2.1.4 预微调模块

经过中间层Transformer的处理后, BERT的最后一层根据任务的不同需求而做不同的调整即可.

比如对于sequence-level的分类任务, BERT直接取第一个[CLS] token 的final hidden state, 再加一层全连接层后进行softmax来预测最终的标签.

  • 对于不同的任务, 微调都集中在预微调模块, 几种重要的NLP微调任务架构图展示如下
  • 从上图中可以发现, 在面对特定任务时, 只需要对预微调层进行微调, 就可以利用Transformer强大的注意力机制来模拟很多下游任务, 并得到SOTA的结果. (句子对关系判断, 单文本主题分类, 问答任务(QA), 单句贴标签(NER))
  • 若干可选的超参数建议如下:
代码语言:javascript
复制
Batch size: 16, 32
Learning rate (Adam): 5e-5, 3e-5, 2e-5
Epochs: 3, 4
2.1.5 BERT的预训练任务

BERT包含两个预训练任务:

  • 任务一: Masked LM (带mask的语言模型训练)
  • 任务二: Next Sentence Prediction (下一句话预测任务)
2.1.5.1 任务一: Masked LM

带mask的语言模型训练

  • 关于传统的语言模型训练, 都是采用left-to-right, 或者left-to-right + right-to-left结合的方式, 但这种单向方式或者拼接的方式提取特征的能力有限. 为此BERT提出一个深度双向表达模型(deep bidirectional representation). 即采用MASK任务来训练模型.
  • 1: 在原始训练文本中, 随机的抽取15%的token作为参与MASK任务的对象.
  • 2: 在这些被选中的token中, 数据生成器并不是把它们全部变成[MASK], 而是有下列3种情况.
    • 2.1: 在80%的概率下, 用[MASK]标记替换该token, 比如my dog is hairy -> my dog is [MASK]
    • 2.2: 在10%的概率下, 用一个随机的单词替换token, 比如my dog is hairy -> my dog is apple
    • 2.3: 在10%的概率下, 保持该token不变, 比如my dog is hairy -> my dog is hairy
  • 3: 模型在训练的过程中, 并不知道它将要预测哪些单词? 哪些单词是原始的样子? 哪些单词被遮掩成了[MASK]? 哪些单词被替换成了其他单词? 正是在这样一种高度不确定的情况下, 反倒逼着模型快速学习该token的分布式上下文的语义, 尽最大努力学习原始语言说话的样子. 同时因为原始文本中只有15%的token参与了MASK操作, 并不会破坏原语言的表达能力和语言规则.

2.1.5.2 任务二: Next Sentence Prediction

下一句话预测任务

  • 在NLP中有一类重要的问题比如QA(Quention-Answer), NLI(Natural Language Inference), 需要模型能够很好的理解两个句子之间的关系, 从而需要在模型的训练中引入对应的任务. 在BERT中引入的就是Next Sentence Prediction任务. 采用的方式是输入句子对(A, B), 模型来预测句子B是不是句子A的真实的下一句话.
  • 1: 所有参与任务训练的语句都被选中作为句子A.
    • 1.1: 其中50%的B是原始文本中真实跟随A的下一句话. (标记为IsNext, 代表正样本)
    • 1.2: 其中50%的B是原始文本中随机抽取的一句话. (标记为NotNext, 代表负样本)
  • 2: 在任务二中, BERT模型可以在测试集上取得97%-98%的准确率.
2. 1.6 数据集

BooksCorpus (800M words) + English Wikipedia (2,500M words)

2.1.7 BERT模型的特点

模型的一些关键参数为:

参数

取值

transformer 层数

12

特征维度

768

transformer head 数

12

总参数量

1.15 亿

2.2 AE模型总结

优点:

  • BERT使用双向transformer,在语言理解相关的任务中表现很好。

缺点:

  • 输入噪声:BERT在预训练过程中使用【mask】符号对输入进行处理,这些符号在下游的finetune任务中永远不会出现,这会导致预训练-微调差异。而AR模型不会依赖于任何被mask的输入,因此不会遇到这类问题。
  • 更适合用于语言嵌入表达, 语言理解方面的任务, 不适合用于生成式的任务

🍔 小结

  • 本小节主要介绍LLM的主要类别架构:自编码模型。
  • 对自编码模型的代表模型:BERT相关模型进行介绍
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-09-25,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 🍔 LLM主要类别
  • 🍔 自编码模型
    • 2.1 代表模型 BERT
      • 2.1.1 BERT的架构
      • 2.1.2 Embedding模块
      • 2.1.3 双向Transformer模块
      • 2.1.4 预微调模块
      • 2.1.5 BERT的预训练任务
      • 2. 1.6 数据集
      • 2.1.7 BERT模型的特点
    • 2.2 AE模型总结
    • 🍔 小结
    相关产品与服务
    腾讯云服务器利旧
    云服务器(Cloud Virtual Machine,CVM)提供安全可靠的弹性计算服务。 您可以实时扩展或缩减计算资源,适应变化的业务需求,并只需按实际使用的资源计费。使用 CVM 可以极大降低您的软硬件采购成本,简化 IT 运维工作。
    领券
    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档