前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >外部排序快速入门详解:基本原理,败者树,置换-选择排序,最佳归并树

外部排序快速入门详解:基本原理,败者树,置换-选择排序,最佳归并树

原创
作者头像
小徐在进步
发布2024-10-11 22:59:32
1570
发布2024-10-11 22:59:32
举报
文章被收录于专栏:数据结构与算法

外部排序

为什么要学习外部排序?

答:

在处理数据的过程中,我们需要把磁盘(外存)中存储的数据拿到内存中处理,因为内存处理更快,但是由于内存空间较小,外存空间很大,外存中的数据元素太多,无法一次全部读入内存进行排序。所以,通过外部排序就是实现对于外存存储元素排序的方法。

1.最基本的外部排序原理

假设在外存中,我们有48个记录,按照每三个记录为一块,建立好基本16个分块。

注意:在建立基本的分块之前,外存的每个小分块要先进行内部排序,保证这16个分块内部是有序的。

内存中,有2个输入缓冲区和1个输出缓冲区,采用归并排序的思想,第一次,先从16个分块中拿出两块,分别放入缓冲区1和缓冲区2.然后每次从这两个缓冲区6的开头,选最小的,放入输出缓冲区,然后凑齐3个记录,就回填外存。以此类推,直到把这1个分块,变为8个分块。

第二次开始,本质还是这个过程,但是值得注意的是,我们必须保证输入缓冲区不空,即如果一旦一个缓冲区的元素被拿空了,要立刻用该分块的其它元素补上。

外部排序时间开销=读写外存的时间+内部排序所需时间+内部归并所需时间

不难得知,采用多路归并可以减少归并趟数。

记结论:

生成初始片段r个,进行k路归并

则趟数S=⌈log~k~^r^⌉

2.外部排序的优化

2.1 败者树优化方法

败者树用来减少关键字的比较次数。

将各个归并段段开头加入到败者树的叶子结点,然后开始构造败者树,注意,中间结点记录的是,当前胜者是来自哪个归并端,在得到冠军来自3号归并端后,将3号归并段的叶子结点移除,将3号归并段新的结点补上,此时,不需要比较太多次,通过败者树向上比较,就可以得出新的冠军,以此类推。

效率分析:

对于k路归并,第一次构造败者树需要对比关键字k-1次,

有了败者树,选出最小元素,只需要对比⌈log~2~^k^⌉

2.2 置换-选择排序优化方法

让归并段更少,即让归并段更长。

初始待排序文件,不断的将当前内存工作区中,大于minmax的最小值,加入归并段中,每加入一个,再从初始待排序文件中补充一个,直到内存工作区中的所有元素都小于minmax,然后开始输出归并段2,更改minmax,重复上述过程。

2.3 最佳归并树

对于归并过程进一步优化。

只讲干货:

每个初始归并端对应一个叶子结点,把归并段段块数作为叶子的权值。最好的归并的过程其实就是构造哈夫曼树的过程。

归并树的WPL=归并过程中的磁盘I/O次数

值得注意的是,k叉归并的最佳归并树一定是严格k叉树,所以很可能叶子结点的个数不满足构造严格k叉归并树,这时候需要补充虚段(权值为0的叶子结点,然后将这些权值为0的结点作为最初始的构造结点.

补充虚段的数量有公式:

(初始归并段数量-1)%(k-1)=u

若u=0,则说明不需要添加虚段,否则添加(k-1)-u个虚段。

下图是一个3路归并的最佳归并树。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 外部排序
    • 1.最基本的外部排序原理
      • 2.外部排序的优化
        • 2.1 败者树优化方法
          • 2.2 置换-选择排序优化方法
            • 2.3 最佳归并树
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档