前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【Linux进程信号】Linux信号机制深度解析:保存与处理技巧

【Linux进程信号】Linux信号机制深度解析:保存与处理技巧

作者头像
Eternity._
发布2024-10-15 09:10:14
1170
发布2024-10-15 09:10:14
举报
文章被收录于专栏:登神长阶

🔍前言:在Linux操作系统的广阔天地中,信号机制无疑是一个充满挑战与机遇的领域。信号,作为进程间通信的一种重要方式,不仅承载着丰富的信息,还扮演着进程控制与管理的重要角色。然而,对于许多初学者而言,信号的保存与处理往往是一个难以逾越的障碍

本文旨在为广大Linux学习者提供一份详尽而实用的指南,帮助他们深入理解Linux中的信号机制,掌握信号的保存与处理技巧。我们将从信号的基本概念出发,逐步深入到信号的捕获、保存、处理以及恢复等各个环节,通过生动的实例和详细的解释,让读者能够轻松掌握这一复杂而强大的功能

让我们一同踏上这段充满探索与发现的旅程,共同揭开Linux信号机制的神秘面纱吧!


📒1. 信号的保存

信号其他相关常见概念

  • 实际执行信号的处理动作称为信号递达(Delivery)
  • 信号从产生到递达之间的状态,称为信号未决(Pending)
  • 进程可以选择阻塞 (Block )某个信号
  • 被阻塞的信号产生时将保持在未决状态,直到进程解除对此信号的阻塞,才执行递达的动作
  • 注意:阻塞和忽略是不同的,只要信号被阻塞就不会递达,而忽略是在递达之后可选的一种处理动作

🌊在内核中的表示

在Linux内核中,信号的保存主要依赖于三种数据结构:pending表、block表和handler表

pending表:

  • pending表是一张位图(bitmap),用于记录当前进程是否收到了信号,以及收到了哪些信号
  • 当进程接收到一个信号时,对应的信号位图上的比特位就会由0置1,表示该信号处于未决(Pending)状态

block表:

  • block表也是一张位图,用于记录特定信号是否被屏蔽(阻塞)
  • 比特位的内容为0表示不屏蔽,为1表示屏蔽。屏蔽的信号在解除屏蔽之前不会被操作系统处理

handler表:

  • handler表是一个函数指针数组,用于保存每个信号对应的处理方法
  • 这些处理方法可以是默认的,或者忽略的,当然也可以是用户自定义的。当信号被递达时,操作系统会根据handler表找到对应的处理方法并执行

举个例子:上图SIGINT信号产生过,但正在被阻塞,所以暂时不能递达。虽然它的处理动作是忽略,但在没有解除阻塞之前不能忽略这个信号,因为进程仍有机会改变处理动作之后再解除阻塞


🍂sigset_t

sigset_t是一个在Unix和Linux系统中用于表示信号集的数据类型。信号集本质上是一个信号的集合,用于指定多个信号,通过使用sigset_t,可以轻松地指定一组信号,并在诸如信号阻塞、信号等待等操作中使用这组信号


sigset_t信号集操作函数:

  • sigemptyset()初始化信号集,将其设置为空集
  • sigfillset():初始化信号集,将其设置为包含所有信号的集合
  • sigaddset()向信号集中添加一个信号
  • sigdelset():从信号集中删除一个信号
  • sigismember()检查一个信号是否属于某个信号集

📙2. 信号集操作函数

信号集操作函数用于处理与信号集(sigset_t类型)相关的操作。这些函数允许用户初始化信号集、添加或删除信号、检查信号是否存在于信号集中,以及修改进程的信号屏蔽字


sigprocmask()函数:

读取或更改进程的信号屏蔽字(阻塞信号集)

返回值:若成功则为0,若出错则为-1

代码语言:javascript
复制
int sigprocmask(int how, const sigset_t *set, sigset_t *oset);

如果oset是非空指针,则读取进程的当前信号屏蔽字通过oset参数传出。如果set是非空指针,则 更改进程的信号屏蔽字,参数how指示如何更改。如果oset和set都是非空指针,则先将原来的信号 屏蔽字备份到oset里,然后根据set和how参数更改信号屏蔽字。假设当前的信号屏蔽字为mask,下表说明了how参数的可选值

代码示例:

代码语言:javascript
复制
void headler(int signo)
{
    cout << "headler: " << signo << endl;
    // exit(0);
}

int main()
{
    cout << "pid: " << getpid() << endl;
    signal(2, headler);

    sigset_t block, oblock;
	
	// 初始化
    sigemptyset(&block);
    sigemptyset(&oblock);

    sigaddset(&block, 2); // 设置对2号信号的屏蔽

    sigprocmask(SIG_BLOCK, &block, &oblock);

    while(1)
    {
        sleep(1);
    }

    return 0;
}

那我们到底能不能屏蔽所有普通信号呢?我们来测试一下

修改代码:

代码语言:javascript
复制
for(int signo = 1; signo <= 31; signo++) sigaddset(&block, signo);

我们发现9号信号,19号信号是不会被屏蔽的


注意:如果调用sigprocmask解除了对当前若干个未决信号的阻塞,则在sigprocmask返回前,至少将其中一个信号递达


sigpending()函数:

读取当前进程的未决信号集,通过set参数传出

返回值:调用成功则返回0,出错则返回-1

代码语言:javascript
复制
int sigpending(sigset_t *set);

代码示例:

代码语言:javascript
复制
void PrintPending(const sigset_t &pending)
{
    for(int signo = 32; signo > 0; signo--)
    {
        if(sigismember(&pending, signo))
        {
            cout << "1";
        }
        else{
            cout << "0";
        }
    }
    cout << endl;
}

int main()
{
	cout << "pid: " << getpid() << endl;
	
    // 屏蔽2号信号
    sigset_t set, oset;

    sigemptyset(&set);
    sigemptyset(&oset);

    sigaddset(&set, 2);
    sigprocmask(SIG_BLOCK, &set, &oset);
	
	int cnt = 0;    
    // 让进程不断获取当前进程的pending
    sigset_t pending;
    while(1)
    {
        sigpending(&pending);
        PrintPending(pending);
        sleep(1);
		
		// 对2好信号进行解除屏蔽
		cnt++;
		if(cnt == 16)
		{
			cout << "对2号信号进行解除屏蔽,准备递达" << endl;
			sigprocmask(SIG_SETMASK, &oset, nullptr);
		}
    }
    return 0;
}

当我们对信号进行处理的时候,会先将pending位图中的1 -> 0,然后再去调用信号捕捉方法


📚3. 信号的处理

进程从内核态返回到用户态的时候(包含身份的变化),进行信号的检测和信号的处理

  • 用户态是一种受控的状态,能够访问的资源是有限的(只能访问自己的[ 0 - 3GB] )
  • 内核态是一种操作系统的工作状态,能够访问大部分系统资源(可以让用户以OS的身份访问[ 3 - 4GB])

调用系统调用接口就是在进程地址空间中进行的!


🌸sigaction

sigaction是一个POSIX标准的系统调用,用于更改和检查信号的处理方式。与传统的signal函数相比,sigaction提供了更多的控制选项和更可靠的信号处理方式

代码语言:javascript
复制
int sigaction(int signo, const struct sigaction *act, struct sigaction *oldact); 
  • signum:信号编号,指定要设置的信号
  • act:指向sigaction结构的指针,在sigaction的实例中指定了对特定信号的处理。如果为NULL,则进程会以缺省方式对信号处理
  • oldact:指向的对象用来保存原来对相应信号的处理,如果为NULL,则不保存

act和oldact指向sigaction结构体


代码示例:

代码语言:javascript
复制
void Print(const sigset_t &pending);

void handler(int signo)
{
    cout << "get a signo: " << signo << endl;

    while(1)
    {
        sigset_t pending;
        sigpending(&pending);
        Print(pending);
        
        sleep(1);
    }
}

void Print(const sigset_t &pending)
{
    for(int signo = 31; signo > 0; signo--)
    {
        if(sigismember(&pending, signo))
        {
            cout << "1";
        }
        else
        {
            cout << "0";
        }
    }
    cout << endl;
}

int main()
{
    cout << "pid: " << getpid() << endl;

    struct sigaction act, oact;
    act.sa_handler = handler;

    // 增加对3号信息的屏蔽
    sigemptyset(&act.sa_mask);
    sigaddset(&act.sa_mask, 3);

    // 对2信号进行屏蔽
    sigaction(2, &act, &oact); 

    while(1) sleep(1);

    return 0;
}

当某个信号的处理函数被调用时,内核自动将当前信号加入进程的信号屏蔽字,当信号处理函数返回时自动恢复原来的信号屏蔽字,这样就保证了在处理某个信号时,如果这种信号再次产生,那么 它会被阻塞到当前处理结束为止,如果在调用信号处理函数时,除了当前信号被自动屏蔽之外,还希望自动屏蔽另外一些信号,则用sa_mask字段说明这些需要额外屏蔽的信号,当信号处理函数返回时自动恢复原来的信号屏蔽字


多个信号情况:

代码示例:

代码语言:javascript
复制
void Print(const sigset_t &pending);

void handler(int signo)
{
    cout << "get a signo: " << signo << endl;
    sleep(1);
}

void Print(const sigset_t &pending)
{
    for(int signo = 31; signo > 0; signo--)
    {
        if(sigismember(&pending, signo))
        {
            cout << "1";
        }
        else
        {
            cout << "0";
        }
    }
    cout << endl;
}

int main()
{
    signal(2, handler);
    signal(3, handler);
    signal(4, handler);
    signal(5, handler);

    sigset_t mask, omask;
    sigemptyset(&mask);
    sigemptyset(&omask);

    sigaddset(&mask, 2);
    sigaddset(&mask, 3);
    sigaddset(&mask, 4);
    sigaddset(&mask, 5);

    sigprocmask(SIG_SETMASK, &mask, &omask);

    cout << "pid: " << getpid() << endl;

    int cnt = 20;
    while(1) 
    {
        sigset_t pending;
        sigpending(&pending);
        Print(pending);

        cnt--;
        sleep(1);
        if(cnt == 0)
        {
            sigprocmask(SIG_SETMASK, &omask, nullptr);
            cout << "cancel 2,3,4,5 block" << endl;
        }
    }

    return 0;
}

由实验结果来看,我们系统是等所有的信号处理完全了,统一再进行返回的,并且他并不是按照顺序来处理信号的


📜4. 可重入函数

可重入函数是指可以被多个任务(如线程、进程)同时调用,并且能保证每个任务调用该函数时都能得到正确结果的函数。换句话说,这种函数在执行的任何时刻都可以被中断,然后在中断点恢复执行而不会导致错误

  • main函数调用 insert函数向一个链表head中插入节点node1,插入操作分为两步,刚做完第一步的 时候,因为硬件中断使进程切换到内核,再次回用户态之前检查到有信号待处理,于是切换 到sighandler函数,sighandler也调用insert函数向同一个链表head中插入节点node2,插入操作的 两步都做完之后从sighandler返回内核态,再次回到用户态就从main函数调用的insert函数中继续 往下执行,先前做第一步之后被打断,现在继续做完第二步。结果是,main函数和sighandler先后 向链表中插入两个节点,而最后只有一个节点真正插入链表中
  • insert函数被不同的控制流程调用,有可能在第一次调用还没返回时就再次进入该函数,这称为重入,insert函数访问一个全局链表,有可能因为重入而造成错乱,像这样的函数称为 不可重入函数,反之,如果一个函数只访问自己的局部变量或参数,则称为可重入(Reentrant) 函数

不可重入函数(符合以下任一条件):

  • 调用了malloc或free,因为malloc也是用全局链表来管理堆的
  • 调用了标准I/O库函数,标准I/O库的很多实现都以不可重入的方式使用全局数据结构

📝5. volatile

volatile是一个类型修饰符,用于告诉虚拟机该变量是极有可能多变的,从而免于一些优化措施,确保变量的正确性和线程间的通信。它主要用于多线程环境下的变量共享,确保变量的可见性和有序性

代码示例:

代码语言:javascript
复制
#include <iostream>
#include <signal.h>
#include <unistd.h>

using namespace std;

int flag = 0;

void headler(int signo)
{
    cout << "signo: " << signo << endl;
    flag = 1;
    cout << "change flag to: " << flag << endl;
}

int main()
{
    signal(2, headler);

    cout << "pid: " << getpid() << endl;
    while(!flag);
    cout << "qiut normal!" << endl;
    return 0;
}

标准情况下,键入 CTRL-C ,2号信号被捕捉,执行自定义动作,修改 flag=1 , while 条件不满足,退出循环,进程退出

优化情况下(-O2)(不是数字0),键入 CTRL-C ,2号信号被捕捉,执行自定义动作,修改 flag=1 ,但是 while 条件依旧满足,进程继续运行

所以要想不让编译器优化,我们需要加上volatile

代码语言:javascript
复制
volatile int flag = 0;

📖6. 总结

🌵SIGCHLD信号(了解)

SIGCHLD信号在子进程状态改变时发送给其父进程。子进程的状态改变包括以下几种情况:

  • 子进程终止,无论是正常终止还是异常终止(如有core dump或无core dump)
  • 子进程停止,例如接收到SIGSTOP信号
  • 停止的子进程被SIGCONT信号唤醒并继续执行

代码示例:

代码语言:javascript
复制
#include <iostream>
#include <signal.h>
#include <unistd.h>
#include <stdlib.h>  
#include <sys/types.h>  
#include <sys/wait.h> 

using namespace std;

void handle(int signo) {  
    int status;  
    pid_t pid;  
    while ((pid = waitpid(-1, &status, WNOHANG)) > 0) {  
        if (WIFEXITED(status)) {  
            printf("Child %d exited with status %d\n", pid, WEXITSTATUS(status));  
        } else if (WIFSIGNALED(status)) {  
            printf("Child %d killed by signal %d\n", pid, WTERMSIG(status));  
        }  
    }  
}  
  
int main() {  
    pid_t pid;  
    struct sigaction act;  
  
    // 设置SIGCHLD信号的处理函数  
    act.sa_handler = handle;  
    sigemptyset(&act.sa_mask);  
    act.sa_flags = 0;  
    sigaction(SIGCHLD, &act, NULL);  
  
    // 创建子进程  
    pid = fork();  
    if (pid < 0) 
    {  
        perror("fork");  
        exit(1);  
    } 
    else if (pid == 0)
     {  
        // 子进程代码  
        printf("Child process (PID: %d) is running\n", getpid());  
        sleep(5); // 模拟子进程工作  
        exit(0);  // 子进程正常退出  
    } 
    else 
    {  
        // 父进程代码  
        printf("Parent process (PID: %d) is running\n", getpid());  
        // 父进程可以继续执行其他任务,等待SIGCHLD信号来回收子进程  
        while (1) {  
            sleep(10); // 模拟父进程工作  
            printf("Parent process is still running\n");  
        }  
    }  
  
    return 0;  
}

父进程设置了SIGCHLD信号的处理函数handle_sigchld,该函数会在子进程状态改变时被调用。在处理函数中,父进程使用waitpid()函数来回收子进程的资源


随着我们对Linux中信号保存与处理机制的深入探讨,我们不难发现,信号不仅是进程间通信的一种重要手段,更是Linux操作系统内核提供的一种强大而灵活的控制机制。通过信号的捕获、保存、处理以及恢复,我们可以实现对进程行为的精确控制,从而满足各种复杂的系统需求

在本文的学习过程中,我们共同经历了从信号的基本概念到高级应用的逐步深入,见证了信号处理在Linux编程中的广泛应用和重要作用。我们不仅掌握了信号的捕获和处理技巧,还学会了如何在实际开发中灵活运用这些技巧来解决实际问题

学习之路永无止境。虽然我们已经对Linux中的信号机制有了较为深入的了解,但仍有许多未知和待探索的领域等待我们去发现。例如,信号的实时性、优先级以及信号与线程的关系等高级话题,都是值得我们进一步学习和研究的

我相信,通过我们的共同努力和不断学习,你一定能够在Linux编程的道路上越走越远,取得更加辉煌的成就!不断探索和学习新的领域,不断提升自己的编程能力和技术水平!

希望本文能够为你提供有益的参考和启示,让我们一起在编程的道路上不断前行! 谢谢大家支持本篇到这里就结束了,祝大家天天开心!

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-10-14,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 📒1. 信号的保存
    • 🌊在内核中的表示
      • 🍂sigset_t
      • 📙2. 信号集操作函数
      • 📚3. 信号的处理
        • 🌸sigaction
        • 📜4. 可重入函数
        • 📝5. volatile
        • 📖6. 总结
          • 🌵SIGCHLD信号(了解)
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档