前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >实现多层感知机

实现多层感知机

作者头像
用户11315985
发布2024-10-16 10:10:21
发布2024-10-16 10:10:21
7600
代码可运行
举报
文章被收录于专栏:CSDN小华CSDN小华
运行总次数:0
代码可运行

多层感知机:

介绍:

缩写:MLP,这是一种人工神经网络,由一个输入层、一个或多个隐藏层以及一个输出层组成,每一层都由多个节点(神经元)构成。在MLP中,节点之间只有前向连接,没有循环连接,这使得它属于前馈神经网络的一种。每个节点都应用一个激活函数,如sigmoid、ReLU等,以引入非线性,从而使网络能够拟合复杂的函数和数据分布。

代码实现:

代码语言:javascript
代码运行次数:0
运行
复制
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader

# Step 1: Define the MLP model
class SimpleMLP(nn.Module):
    def __init__(self):
        super(SimpleMLP, self).__init__()
        self.fc1 = nn.Linear(784, 128)  # Input layer to hidden layer
        self.fc2 = nn.Linear(128, 64)   # Hidden layer to another hidden layer
        self.fc3 = nn.Linear(64, 10)    # Hidden layer to output layer
        self.relu = nn.ReLU()

    def forward(self, x):
        x = x.view(-1, 784)             # Flatten the input from 28x28 to 784
        x = self.relu(self.fc1(x))
        x = self.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# Step 2: Load MNIST dataset
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform)

train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)

# Step 3: Define loss function and optimizer
model = SimpleMLP()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)

# Step 4: Train the model
num_epochs = 5
for epoch in range(num_epochs):
    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))

# Step 5: Evaluate the model on the test set (optional)
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print('Accuracy of the network on the 10000 test images: {} %'.format(100 * correct / total))

运行结果:

问题答疑:

线性变换与非线性变换

在神经网络中

线性变换通常指的是权重矩阵和输入数据的矩阵乘法,再加上偏置向量。数学上,对于一个输入向量𝑥x和权重矩阵𝑊W,加上偏置向量𝑏b,线性变换可以表示为: 𝑧=𝑊𝑥+𝑏z=Wx+b 非线性变换是指在神经网络的每一层之后应用的激活函数,如ReLU、sigmoid或tanh等。这些函数引入了非线性,使神经网络能够学习和表达复杂的函数关系。没有非线性变换,无论多少层的神经网络最终都将简化为一个线性模型。

参数含义

在上述模型中,参数如784, 128, 64, 10并不是字节,而是神经网络层的尺寸,具体来说是神经元的数量:

  • 784: 这是输入层的神经元数量,对应于MNIST数据集中每个图片的像素数量。MNIST的图片是28x28像素,因此总共有784个像素点。
  • 12864: 这是两个隐藏层的神经元数量。它们代表了第一层和第二层的宽度,即这一层有多少个神经元。
  • 10: 这是输出层的神经元数量,对应于MNIST数据集中的10个数字类别(0到9)。
为什么清除梯度?

在每一次前向传播和反向传播过程中,梯度会被累积在张量的.grad属性中。如果不手动清零,这些梯度将会被累加,导致不正确的梯度值。因此,在每次迭代开始之前,都需要调用optimizer.zero_grad()来清空梯度。

反向传播的作用

反向传播(Backpropagation)是一种算法,用于计算损失函数相对于神经网络中所有权重的梯度。它的目的是为了让神经网络知道,当损失函数值较高时,哪些权重需要调整,以及调整的方向和幅度。这些梯度随后被用于权重更新,以最小化损失函数。

为什么更新权重?

权重更新是基于梯度下降算法进行的。在反向传播计算出梯度后,权重通过optimizer.step()函数更新,以朝着减小损失函数的方向移动。 这是训练神经网络的核心,即通过不断调整权重和偏置,使模型能够更好地拟合训练数据,从而提高预测准确性。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-07-12,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 多层感知机:
    • 介绍:
    • 代码实现:
    • 运行结果:
    • 问题答疑:
      • 线性变换与非线性变换
      • 参数含义
      • 为什么清除梯度?
      • 反向传播的作用
      • 为什么更新权重?
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档