前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >45. 盘点那些必问的数据结构算法题之基础排序算法

45. 盘点那些必问的数据结构算法题之基础排序算法

作者头像
用户11332765
发布2024-11-01 16:21:31
810
发布2024-11-01 16:21:31
举报
文章被收录于专栏:编程
盘点那些必问的数据结构算法题之基础排序算法

0 概述

排序算法也是面试中常常提及的内容,问的最多的应该是快速排序、堆排序。这些排序算法很基础,但是如果平时不怎么写代码的话,面试的时候总会出现各种bug。

虽然思想都知道,但是就是写不出来。**本文打算对各种排序算法进行一个汇总,包括插入排序、冒泡排序、选择排序、计数排序、归并排序,基数排序、桶排序、快速排序等。**快速排序比较重要,会单独写一篇,而堆排序见本系列的二叉堆那篇文章即可。

需要提到的一点就是:插入排序,冒泡排序,归并排序,计数排序都是稳定的排序,而其他排序则是不稳定的。

本文代码:https://github.com/shishujuan/dsalg/tree/master/code/alg/sort

1 插入排序

插入排序是很基本的排序,特别是在数据基本有序的情况下,插入排序的性能很高,最好情况可以达到O(N),其最坏情况和平均情况时间复杂度都是 O(N^2)。代码如下:

代码语言:javascript
复制
/**
 * 插入排序
 */
void insertSort(int a[], int n)
{
    int i, j;
    for (i = 1; i < n; i++) {
        /*
         * 循环不变式:a[0...i-1]有序。每次迭代开始前,a[0...i-1]有序,
         * 循环结束后i=n,a[0...n-1]有序
         * */
        int key = a[i];
        for (j = i; j > 0 && a[j-1] > key; j--) {
            a[j] = a[j-1];
        }
        a[j] = key;
    }
}

2 希尔排序

希尔排序内部调用插入排序来实现,通过对 N/2,N/4…1阶分别排序,最后得到整体的有序。

代码语言:javascript
复制
/**
 * 希尔排序
 */
void shellSort(int a[], int n)
{
    int gap;
    for (gap = n/2; gap > 0; gap /= 2) {
        int i;
        for (i = gap; i < n; i++) {
            int key = a[i], j;
            for (j = i; j >= gap && key < a[j-gap]; j -= gap) {
                a[j] = a[j-gap];
            }
            a[j] = key;
        }
    }
}

3 选择排序

选择排序的思想就是第i次选取第i小的元素放在位置i。比如第1次就选择最小的元素放在位置0,第2次选择第二小的元素放在位置1。

选择排序最好和最坏时间复杂度都为 O(N^2)。

代码如下:

代码语言:javascript
复制
/**
 * 选择排序
 */
void selectSort(int a[], int n)
{
    int i, j, min, tmp;
    for (i = 0; i < n-1; i++) {
        min = i;
        for (j = i+1; j < n; j++) {
            if (a[j] < a[min])
                min = j;
        }
        if (min != i)
            tmp = a[i], a[i] = a[min], a[min] = tmp; //交换a[i]和a[min]
    }
}

循环不变式:在外层循环执行前,a[0…i-1]包含 a 中最小的 i 个数,且有序。

  • 初始时,i=0,a[0…-1] 为空,显然成立。
  • 每次执行完成后,a[0…i] 包含 a 中最小的 i+1 个数,且有序。即第一次执行完成后,a[0…0] 包含 a 最小的 1 个数,且有序。
  • 循环结束后,i=n-1,则 a[0…n-2]包含 a 最小的 n-1 个数,且已经有序。所以整个数组有序。

4 冒泡排序

冒泡排序时间复杂度跟选择排序相同。其思想就是进行 n-1 趟排序,每次都是把最小的数上浮,像鱼冒泡一样。最坏情况为 O(N^2)。代码如下:

代码语言:javascript
复制
/**
 * 冒泡排序-经典版
 */
void bubbleSort(int a[], int n)
{
    int i, j, tmp;
    for (i = 0; i < n; i++) {
        for (j = n-1; j >= i+1; j--) {
            if (a[j] < a[j-1]){
                tmp = a[j];
            	a[j] = a[j-1];
                a[j-1] = tmp;
            }
        }
    }
}

循环不变式:在循环开始迭代前,子数组 a[0…i-1] 包含了数组 a[0…n-1] 的 i-1 个最小值,且是排好序的。

对冒泡排序的一个改进就是在每趟排序时判断是否发生交换,如果一次交换都没有发生,则数组已经有序,可以不用继续剩下的趟数直接退出。改进后代码如下:

代码语言:javascript
复制
/**
 * 冒泡排序-优化版
 */
void betterBubbleSort(int a[], int n)
{
    int tmp, i, j;
    for (i = 0; i < n; i++) {
        int sorted = 1;
        for (j = n-1; j >= i+1; j--) {
            if (a[j] < a[j-1]) {
                tmp = a[j], a[j] = a[j-1], a[j-1] = tmp;
                sorted = 0;
            }   
        }   
        if (sorted)
            return ;
    }   
}

5 计数排序

假定数组为 a[0…n-1] ,数组中存在重复数字,数组中最大数字为k,建立两个辅助数组 b[] 和 c[],b[] 用于存储排序后的结果,c[] 用于存储临时值。时间复杂度为 O(N),适用于数字范围较小的数组。

计数排序原理如上图所示,代码如下:

代码语言:javascript
复制
/**
 * 计数排序
 */
void countingSort(int a[], int n) 
{
    int i, j;
    int *b = (int *)malloc(sizeof(int) * n);
    int k = maxOfIntArray(a, n); // 求数组最大元素
    int *c = (int *)malloc(sizeof(int) * (k+1));  //辅助数组

    for (i = 0; i <= k; i++)
        c[i] = 0;

    for (j = 0; j < n; j++)
        c[a[j]] = c[a[j]] + 1; //c[i]包含等于i的元素个数

    for (i = 1; i <= k; i++)
        c[i] = c[i] + c[i-1];  //c[i]包含小于等于i的元素个数

    for (j = n-1; j >= 0; j--) {  // 赋值语句
        b[c[a[j]]-1] = a[j]; //结果存在b[0...n-1]中
        c[a[j]] = c[a[j]] - 1;
    }

    /*方便测试代码,这一步赋值不是必须的*/
    for (i = 0; i < n; i++) {
        a[i] = b[i];
    }

    free(b);
    free(c);
}

扩展:如果代码中的给数组 b[] 赋值语句 for (j=n-1; j>=0; j–) 改为 for(j=0; j<=n-1; j++),该代码仍然正确,只是排序不再稳定。

6 归并排序

归并排序通过分治算法,先排序好两个子数组,然后将两个子数组归并。时间复杂度为 O(NlgN)。

代码如下:

代码语言:javascript
复制
/*
 * 归并排序-递归
 * */
void mergeSort(int a[], int l, int u) 
{
    if (l < u) {
        int m = l + (u-l)/2;
        mergeSort(a, l, m);
        mergeSort(a, m + 1, u);
        merge(a, l, m, u);
    }
}

/**
 * 归并排序合并函数
 */
void merge(int a[], int l, int m, int u) 
{
    int n1 = m - l + 1;
    int n2 = u - m;

    int left[n1], right[n2];
    int i, j;
    for (i = 0; i < n1; i++) /* left holds a[l..m] */
        left[i] = a[l + i];

    for (j = 0; j < n2; j++) /* right holds a[m+1..u] */
        right[j] = a[m + 1 + j];

    i = j = 0;
    int k = l;
    while (i < n1 && j < n2) {
        if (left[i] < right[j])
            a[k++] = left[i++];
        else
            a[k++] = right[j++];
    }
    while (i < n1) /* left[] is not exhausted */
        a[k++] = left[i++];
    while (j < n2) /* right[] is not exhausted */
        a[k++] = right[j++];
}

扩展:归并排序的非递归实现怎么做?

归并排序的非递归实现其实是最自然的方式,先两两合并,而后再四四合并等,就是从底向上的一个过程。

代码如下:

代码语言:javascript
复制
/**
 * 归并排序-非递归
 */
void mergeSortIter(int a[], int n)
{
    int i, s=2;
    while (s <= n) {
        i = 0;
        while (i+s <= n){
            merge(a, i, i+s/2-1, i+s-1);
            i += s;
        }

        //处理末尾残余部分
        merge(a, i, i+s/2-1, n-1);
        s*=2;
    }
    //最后再从头到尾处理一遍
    merge(a, 0, s/2-1, n-1);
}

7 基数排序、桶排序

基数排序的思想是对数字每一位分别排序(注意这里必须是稳定排序,比如计数排序等,否则会导致结果错误),最后得到整体排序。

假定对 N 个数字进行排序,如果数字有 d 位,每一位可能的最大值为 K,则每一位的稳定排序需要 O(N+K) 时间,总的需要 O(d(N+K)) 时间,当 d 为常数,K=O(N) 时,总的时间复杂度为O(N)。

而桶排序则是在输入符合均匀分布时,可以以线性时间运行,桶排序的思想是把区间 [0,1) 划分成 N 个相同大小的子区间,将 N 个输入均匀分布到各个桶中,然后对各个桶的链表使用插入排序,最终依次列出所有桶的元素。

这两种排序使用场景有限,代码就略过了,更详细可以参考《算法导论》的第8章。

参考资料

《算法导论》 https://www.cnblogs.com/liushang0419/archive/2011/09/19/2181476.html

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022-09-01,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 盘点那些必问的数据结构算法题之基础排序算法
  • 0 概述
  • 1 插入排序
  • 2 希尔排序
  • 3 选择排序
  • 4 冒泡排序
  • 5 计数排序
  • 6 归并排序
  • 7 基数排序、桶排序
  • 参考资料
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档