首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >AAAI 2024 | 时间序列(Time Series)和时空数据(Spatial-Temporal)论文总结

AAAI 2024 | 时间序列(Time Series)和时空数据(Spatial-Temporal)论文总结

作者头像
时空探索之旅
发布2024-11-19 16:08:23
发布2024-11-19 16:08:23
8720
举报
文章被收录于专栏:时空探索之旅时空探索之旅

AAAI今年共有12100篇投稿(Main Technical Track),有9862篇经过严格审稿,共录取了2342篇论文,录取率23.75%。。

AAAI 2024将在2024年2月22日到25日于加拿大温哥华举行。

本文总结了2024 AAAI上有关时空数据(spatial-temporal)时间序列(time series)数据相关论文。

时空数据Topic:交通预测,轨迹表示学习,信控优化等

时间序列Topic:时间序列预测,分类,异常检测,因果发现等

时间序列(time series)

1. MSGNet: Learning Multi-Scale Inter-Series Correlations for Multivariate Time Series Forecasting

作者:Cai, Wanlin; Liang, Yuxuan; LIU, XIANGGEN; Feng, Jianshuai; Wu, Yuankai*

关键词:多元时间序列预测,相关性

arXiv:https://arxiv.org/abs/2401.00423

解读1:多元时序预测:多尺度下的多变量关系学习

解读2:AAAI 2024 | MSGNet:学习多尺度序列之间的相关性以进行多元时间序列预测

2. Learning from Polar Representation: An Extreme-Adaptive Model for Long-Term Time Series Forecasting

作者:Li, Yanhong; Xu, Jack; Anastasiu, David C*

关键词:长时预测

arXiv:https://arxiv.org/abs/2312.08763

DAN

3. Graph-Aware Contrasting for Multivariate Time-Series Classification

作者:Wang, Yucheng*; Xu, Yuecong; Yang, Jianfei; Wu, Min; Li, Xiaoli; Xie, Lihua; Chen, Zhenghua

关键词:多元时间序列分类,图对比

arXiv:https://arxiv.org/abs/2309.05202v3

TS-GAC

4. U-Mixer: An Unet-Mixer Architecture with Stationarity Correction for Time Series Forecasting

作者:Ma, Xiang; Li, Xuemei; Fang, Lexin; Zhao, Tianlong; Zhang, Caiming*

关键词:平稳性校正,时间序列预测

arXiv:https://arxiv.org/abs/2401.02236

U-Mixer

5. [Oral] GraFITi: Graphs for Forecasting Irregularly Sampled Time Series

作者:Yalavarthi, Vijaya Krishna*; Madhusudhanan, Kiran; Scholz, Randolf; Ahmed, Nourhan; Burchert, Johannes; Jawed, Shayan; Born, Stefan; Schmidt-Thieme, Lars

关键词:不规则时间序列,图(Graph)

arXiv链接:https://arxiv.org/abs/2305.12932

GraFITi

6. IVP-VAE: Modeling EHR Time Series with Initial Value Problem Solvers

作者:Xiao, Jingge*; Basso, Leonie; Nejdl, Wolfgang; Ganguly, Niloy; Sikdar, Sandipan

关键词:时间序列建模(EHR)

arXiv链接:https://arxiv.org/abs/2305.06741

Modeling irregular time series with IVP-VAE

7. Cross-Domain Contrastive Learning for Time Series Clustering

作者:Peng, Furong*; jike, luo; Lu, Xuan; Wang, Sheng; Li, Feijiang

关键词:跨域对比学习,时间序列聚类

CDCC

8. SimPSI: A Simple Strategy to Preserve Spectral Information in Time Series Data Augmentation

作者:Ryu, Hyun*; Yoon, Sunjae; Yoon, Hee Suk; Yoon, Eunseop; Yoo, Chang D.

关键词:谱域、时间序列数据增强

Code:https://github.com/Hyun-Ryu/simpsi

arXiv:https://arxiv.org/abs/2312.05790

SimPSI

9. TimesURL: Self-supervised Contrastive Learning for Universal Time Series Representation Learning

作者:Liu, jiexi*; Chen, Songcan

关键词:自监督,对比学习,时间序列表示学习

arXiv:https://arxiv.org/abs/2312.15709

解读TimesURL:探索时间序列的表示学习

TimesURL

10. CGS-Mask: Making Time Series Predictions Intuitive for All

作者:Lu, Feng; Li, Wei*; Sun, Yifei; Song, Cheng; Yufei, Ren; Zomaya, Albert

关键词:时间序列预测,可解释性(intuitive)

arXiv:https://arxiv.org/abs/2312.09513

CGS-Mask

11. Diffusion Language-Shapelets for Semisupervised Time-series Classification

作者:Liu, Zhen; Pei, Wenbin; Lan, Disen; Ma, Qianli*

关键词:半监督,Shapelet,时间序列分类

12. CUTS+: High-dimensional Causal Discovery from Irregular Time-series

作者:Yuxiao Cheng, Lianglong Li, Tingxiong Xiao, Zongren Li, Qin Zhong, Jinli Suo, Kunlun He

关键词:因果发现,不规则时间序列

Code:https://github.com/jarrycyx/unn

arXiv:https://arxiv.org/abs/2305.05890

CUTS+

13. When Model Meets New Normals: Test-time Adaptation for Unsupervised Time-series Anomaly Detection

作者:Kim, Dongmin*; Park, Sunghyun ; Choo, Jaegul

关键词:无监督,Test-time Adaptation(TTA),时间序列异常检测

Code:https://github.com/carrtesy/M2N2

arXiv:https://arxiv.org/abs/2312.11976

Illustration on detrend module

14. HDMixer: Hierarchical Dependency with Extendable Patch for Multivariate Time Series Forecasting

作者:Huang, Qihe*; Shen, Lei; Zhang, Ruixin; Cheng, Jiahuan; Ding, Shouhong; Zhou, Zhengyang ; Wang, Yang

关键词:多层级,多元时间序列预测

15. Energy-efficient Streaming Time Series Classification with Attentive Power Iteration

作者:Huang, Hao*; Shah, Tapan; Evans, Scott; Yoo, Shinjae

关键词:时间序列分类

16. Latent Diffusion Transformer for Probabilistic Time Series Forecasting

作者:Feng, Shibo*; Miao, Chunyan; Zhang, Zhong; Zhao, Peilin

关键词:扩散Transfomer,概率时间预测

17. Considering Nonstationary within Multivariate Time Series with Variational Hierarchical Transformer for Forecasting

作者:Wang, Muyao*; Chen, Wenchao; Chen, Bo

关键词:非平稳性,多层级,多元时间序列

时空数据(spatial-temporal data)

1. Spatial-Temporal Interplay in Human Mobility: A Hierarchical Reinforcement Learning Approach with Hypergraph Representation

作者:Zhang, Zhaofan; Xiao, Yanan; Jiang, Lu; Yang, Dingqi; Yin, Minghao; Wang, Pengyang

关键词:人类移动性,超图,多层次,强化学习

arXiv:https://arxiv.org/abs/2312.15717

STI-HRL

2. Fully-Connected Spatial-Temporal Graph for Multivariate Time Series Data

作者:Wang, Yucheng*; Xu, Yuecong; Yang, Jianfei; Wu, Min; Li, Xiaoli; Xie, Lihua; Chen, Zhenghua

关键词:时空图,多元时间序列

arXiv:https://arxiv.org/abs/2309.05305

解读AAAI 2024 | 多维时序下的全连接时空图模型

FC-STGNN

3. Earthfarsser: Versatile Spatio-Temporal Dynamical Systems Modeling in One Model

作者:Wu, Hao*; Liang, Yuxuan; Xiong, Wei; Zhou, Zhengyang ; Huang, Wei; wang, shilong; wang, kun

关键词:时空动态系统,气象预测

Code:https://github.com/easylearningscores/EarthFarseer

arXiv:https://arxiv.org/abs/2312.08403

Earthfarsser

4. [Oral] Prompt to transfer: Sim-to-real Transfer for Traffic Signal Control with Prompt Learning

作者:Da, Longchao; Gao, Mingquan; Wei, Hua*; Da, Longchao; mei, hao

关键词:提示学习,信控优化,sim2real

arXiv:https://arxiv.org/abs/2308.14284

PromptGAT

5. Urban Region Embedding via Multi-View Contrastive Prediction

作者:Li, Zechen; Huang, Weiming; Zhao, Kai; Yang, Min; Gong, Yongshun; Chen, Meng*

关键词:表示学习,对比学习

ReCP

6. KGTS: Contrastive Trajectory Similarity Learning over Prompt Knowledge Graph Embedding

作者:Chen, Zhen; Zhang, Dalin; Feng, Shanshan; Chen, Kaixuan; Chen, Lisi; Han, Peng; Shang, Shuo*

关键词:对比学习,轨迹相似度,知识图谱,表示学习

7. CI-STHPAN: Pre-Trained Attention Network for Stock Selection with Channel-Independent Spatio-Temporal Hypergraph

作者:Xia, Hongjie; Ao, Huijie; Li, Long; Liu, Yu; Liu, Sen; Ye, Guangnan*; Chai, Hongfeng

关键词:预训练,通道独立(CI),时空超图

8. Hawkes-enhanced Spatial-Temporal Hypergraph Contrastive Learning based on Criminal Correlations

作者:Liang, Ke*; Zhou, Sihang; Liu, Meng; Liu, Yue; Tu, Wenxuan; Zhang, Yi; Fang, Liming; Liu, Zhe; Liu, Xinwang

关键词:犯罪预测,时空超图,对比学习

9. ModWaveMLP: MLP-based Mode Decomposition and Wavelet Denoising Model to Defeat Complex Structures in Traffic Forecasting

作者:Sun, Ke*; Liu, Pei; Li, Pengfei; Liao, Zhifang

关键词:交通预测,小波去噪, MLP

10. Spatio-Temporal Pivotal Graph Neural Networks for Traffic Flow Forecasting

作者:Kong, Weiyang; Guo, Ziyu; Liu, Yubao

关键词:交通预测,时空图神经网络

11. Towards Streaming Spatial-Temporal Graph Learning: A Decoupled Perspective

作者:Wang, Binwu; Wang, Pengkun; Zhang, Yudong; Wang, Xu; Zhou, Zhengyang ; Bai, Lei; Wang, Yang

关键词:时空图,解耦

12. Successive POI Recommendation via Brain-inspired Spatiotemporal Aware Representation

作者:Ma, Gehua ; Wang, He; Zhao, Jingyuan; Yan, Rui; Tang, Huajin*

关键词:POI推荐,脑启发式,时空感知建模(表示)

13. Learning Time Slot Preferences via Mobility Tree for Next POI Recommendation

作者:Huang, Tianhao Alex; Pan, Xuan; Cai, Xiangrui*; ZHANG, Ying; Yuan, Xiaojie

关键词:POI推荐

Code:https://github.com/Skyyyy0920/MTNet

相关链接

AAAI 2024 Main Technical Track所有论文:https://aaai.org/wp-content/uploads/2023/12/Main-Track.pdf(这是个pdf,手机打开会下载,PC浏览器打开友好)

如果觉得有帮助还请分享,在看,点赞

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2024-02-21,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 时空探索之旅 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 时间序列(time series)
    • 1. MSGNet: Learning Multi-Scale Inter-Series Correlations for Multivariate Time Series Forecasting
    • 2. Learning from Polar Representation: An Extreme-Adaptive Model for Long-Term Time Series Forecasting
    • 3. Graph-Aware Contrasting for Multivariate Time-Series Classification
    • 4. U-Mixer: An Unet-Mixer Architecture with Stationarity Correction for Time Series Forecasting
    • 5. [Oral] GraFITi: Graphs for Forecasting Irregularly Sampled Time Series
    • 6. IVP-VAE: Modeling EHR Time Series with Initial Value Problem Solvers
    • 7. Cross-Domain Contrastive Learning for Time Series Clustering
    • 8. SimPSI: A Simple Strategy to Preserve Spectral Information in Time Series Data Augmentation
    • 9. TimesURL: Self-supervised Contrastive Learning for Universal Time Series Representation Learning
    • 10. CGS-Mask: Making Time Series Predictions Intuitive for All
    • 11. Diffusion Language-Shapelets for Semisupervised Time-series Classification
    • 12. CUTS+: High-dimensional Causal Discovery from Irregular Time-series
    • 13. When Model Meets New Normals: Test-time Adaptation for Unsupervised Time-series Anomaly Detection
    • 14. HDMixer: Hierarchical Dependency with Extendable Patch for Multivariate Time Series Forecasting
    • 15. Energy-efficient Streaming Time Series Classification with Attentive Power Iteration
    • 16. Latent Diffusion Transformer for Probabilistic Time Series Forecasting
    • 17. Considering Nonstationary within Multivariate Time Series with Variational Hierarchical Transformer for Forecasting
  • 时空数据(spatial-temporal data)
    • 1. Spatial-Temporal Interplay in Human Mobility: A Hierarchical Reinforcement Learning Approach with Hypergraph Representation
    • 2. Fully-Connected Spatial-Temporal Graph for Multivariate Time Series Data
    • 3. Earthfarsser: Versatile Spatio-Temporal Dynamical Systems Modeling in One Model
    • 4. [Oral] Prompt to transfer: Sim-to-real Transfer for Traffic Signal Control with Prompt Learning
    • 5. Urban Region Embedding via Multi-View Contrastive Prediction
    • 6. KGTS: Contrastive Trajectory Similarity Learning over Prompt Knowledge Graph Embedding
    • 7. CI-STHPAN: Pre-Trained Attention Network for Stock Selection with Channel-Independent Spatio-Temporal Hypergraph
    • 8. Hawkes-enhanced Spatial-Temporal Hypergraph Contrastive Learning based on Criminal Correlations
    • 9. ModWaveMLP: MLP-based Mode Decomposition and Wavelet Denoising Model to Defeat Complex Structures in Traffic Forecasting
    • 10. Spatio-Temporal Pivotal Graph Neural Networks for Traffic Flow Forecasting
    • 11. Towards Streaming Spatial-Temporal Graph Learning: A Decoupled Perspective
    • 12. Successive POI Recommendation via Brain-inspired Spatiotemporal Aware Representation
    • 13. Learning Time Slot Preferences via Mobility Tree for Next POI Recommendation
    • 相关链接
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档