前往小程序,Get更优阅读体验!
立即前往
发布
社区首页 >专栏 >漂亮的单细胞多组火山图

漂亮的单细胞多组火山图

作者头像
用户11414625
发布2024-12-20 16:45:23
发布2024-12-20 16:45:23
8300
代码可运行
举报
文章被收录于专栏:生信星球520生信星球520
运行总次数:0
代码可运行

最近发现一篇超级棒且适合做教材的单细胞文章,16分呢。

《Single-cell transcriptome analysis reveals the association between histone lactylation and cisplatin resistance in bladder cancer 》

其中的fig1B很好的展示了每种细胞类型的marker基因,把我迷住了,把它复现出来,可以用在每个单细胞数据呢!拿去用。

输入数据是已经做完细胞类型注释的seurat对象,除此之外啥也不要啦。纯代码的。

代码语言:javascript
代码运行次数:0
复制
rm(list = ls())
library(Seurat)
library(dplyr)
library(patchwork)
library(ggplot2)
load( "sce.Rdata")
scRNA = sce
scRNA@meta.data$celltype = Idents(scRNA)
ctys = levels(scRNA)
ctys
代码语言:javascript
代码运行次数:0
复制
## [1] "naive B"     "CD8 T"       "Naive CD4 T" "plasma B"    "CD14+ Mono" 
## [6] "endothelial" "Fibroblasts" "NK"          "DC"
代码语言:javascript
代码运行次数:0
复制
scRNA.markers <- FindAllMarkers(scRNA, min.pct = 0.25, 
                    logfc.threshold = 0.25)
head(scRNA.markers)
代码语言:javascript
代码运行次数:0
复制
##                  p_val avg_log2FC pct.1 pct.2     p_val_adj cluster     gene
## CD79A     0.000000e+00   5.356611 0.915 0.060  0.000000e+00 naive B    CD79A
## BANK1     0.000000e+00   6.778892 0.853 0.026  0.000000e+00 naive B    BANK1
## MS4A1     0.000000e+00   5.677155 0.848 0.050  0.000000e+00 naive B    MS4A1
## HLA-DRA  1.482079e-306   2.775984 0.994 0.336 3.060197e-302 naive B  HLA-DRA
## HLA-DQB1 7.341732e-295   2.622558 0.926 0.207 1.515921e-290 naive B HLA-DQB1
## HLA-DQA1 5.404715e-292   2.727477 0.865 0.138 1.115966e-287 naive B HLA-DQA1
代码语言:javascript
代码运行次数:0
复制
colnames(scRNA.markers)[6] = "celltype"
k = scRNA.markers$p_val_adj<0.05;table(k)
代码语言:javascript
代码运行次数:0
复制
## k
## FALSE  TRUE 
##  3960  8946
代码语言:javascript
代码运行次数:0
复制
scRNA.markers = scRNA.markers[k,]

#上下调
scRNA.markers$label <- ifelse(scRNA.markers$avg_log2FC<0,"sigDown","sigUp")
topgene <- scRNA.markers %>%
  group_by(celltype) %>%
  top_n(n = 10, wt = avg_log2FC) %>%
  bind_rows(group_by(scRNA.markers, celltype) %>%
              top_n(n = 10, wt = -avg_log2FC))
head(topgene)
代码语言:javascript
代码运行次数:0
复制
## # A tibble: 6 × 8
## # Groups:   celltype [1]
##       p_val avg_log2FC pct.1 pct.2 p_val_adj celltype gene      label
##       <dbl>      <dbl> <dbl> <dbl>     <dbl> <fct>    <chr>     <chr>
## 1 0               6.78 0.853 0.026 0         naive B  BANK1     sigUp
## 2 3.13e-250       6.98 0.498 0.011 6.47e-246 naive B  LINC00926 sigUp
## 3 2.59e-207       6.02 0.423 0.01  5.34e-203 naive B  CD24      sigUp
## 4 1.42e-204       6.90 0.411 0.008 2.92e-200 naive B  LINC02397 sigUp
## 5 1.15e-196       7.13 0.403 0.01  2.38e-192 naive B  IGHD      sigUp
## 6 5.77e-166       7.47 0.335 0.006 1.19e-161 naive B  PAX5      sigUp
代码语言:javascript
代码运行次数:0
复制
#根据log2FC范围确定背景柱长度:
dfbar = scRNA.markers %>%
  group_by(celltype) %>%
    summarise(low = round(min(avg_log2FC)-0.5),
            up = round(max(avg_log2FC)+0.5))

#绘制背景柱和散点图:
p1 <- ggplot()+
  geom_col(aes(x = celltype ,y = low),dfbar,
           fill = "#dcdcdc",alpha = 0.6)+
  geom_col(aes(x = celltype ,y = up),dfbar,
           fill = "#dcdcdc",alpha = 0.6)+
  geom_jitter(aes(x = celltype, y = avg_log2FC, color = label),scRNA.markers,
              width =0.4,size = 1)+
  scale_color_manual(values = c("#0077c0","#c72d2e"))+
  theme_classic()
p1
代码语言:javascript
代码运行次数:0
复制
#X轴的色块标签:
library(RColorBrewer)
mycol <- colorRampPalette(rev(brewer.pal(n = 7, name ="Set1")))(length(ctys))
p2 <- p1 + 
  geom_tile(aes(x = ctys,y = 0),
            height = 0.5,fill = mycol, show.legend = F)+
  geom_text(aes(x= ctys, y = 0, label = ctys),
            size = 3,fontface = "bold")
p2
代码语言:javascript
代码运行次数:0
复制
library(ggrepel)
#给每种细胞类型的top基因加上标签,调整细节:
p3 <- p2 + 
  geom_text_repel(aes(x = celltype,y = avg_log2FC,label = gene),
                  topgene,size = 3 )+
  labs(x = "CellType",y = "Average log2FoldChange",
       title = "Differential expression genes")+
  theme(
    plot.title = element_text(size = 14,color = "black",face = "bold"),
    axis.title = element_text(size = 12,color = "black",face = "bold"),
    axis.line.y = element_line(color = "black",linewidth = 0.8),
    axis.line.x = element_blank(),
    axis.text.x = element_blank(),
    axis.ticks.x = element_blank(),
    panel.grid = element_blank(),
    legend.position  = c(0.98,0.96),
    legend.background = element_blank(),
    legend.title = element_blank(),
    legend.direction = "vertical",
    legend.justification = c(1,0),
    legend.text = element_text(size = 12)
  )+
  guides(color = guide_legend(override.aes = list(size = 4)))  
p3

和原图一般无二啦。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2024-11-07,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 生信星球 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档