前往小程序,Get更优阅读体验!
立即前往
发布
社区首页 >专栏 >转录组可视化的全年度爱用包:TOmicsVis

转录组可视化的全年度爱用包:TOmicsVis

作者头像
生信技能树
发布2024-12-23 14:19:23
发布2024-12-23 14:19:23
24100
代码可运行
举报
文章被收录于专栏:生信技能树生信技能树
运行总次数:0
代码可运行

前面给大家介绍过一款单细胞数据可视化大全年度爱用包《终于有人对Seurat包丑到哭的可视化出手了:年度爱用包!》

今天给大家介绍一款 转录组可视化的全年度爱用包:TOmicsVis,由厦门大学海洋与地球科学学院海洋环境科学国家重点实验室/厦门大学福建海洋可持续发展研究院开发,相关研究成果在iMeta上发表。

Miao, Ben-Ben, Dong, Wei, Han, Zhao-Fang, Luo, Xuan, Ke, Cai-Huan, and You, Wei-Wei. 2023. “ TOmicsVis: An All-in-One Transcriptomic Analysis and Visualization R Package with shinyapp Interface.” iMeta e137. https://doi.org/10.1002/imt2.137

工具链接:

TOmicsVis App页面:https://shiny.hiplot.cn/tomicsvis-shiny/

github页面:GitHub - benben-miao/TOmicsVis: Transcriptomics Visualization R package.

Website API: https://benben-miao.github.io/TOmicsVis/

TOmicsVis 包功能描述:

TOmicsVis (Transcriptomics Visualization) 专注于整合并提供从样品性状统计到转录组学基因挖掘的完整可视化方案,这个里面集合了非常多的可视化功能,现在来挑选其中好看的 试试看!

先放图片感受一波:

安装

首先需要安装依赖包,如果你已经有了这些包就不用安装:

代码语言:javascript
代码运行次数:0
复制
# 设置镜像
options(BioC_mirror="https://mirrors.westlake.edu.cn/bioconductor")
options("repos"=c(CRAN="https://mirrors.westlake.edu.cn/CRAN/"))

# Install required packages from Bioconductor
install.packages("BiocManager")
BiocManager::install(c("ComplexHeatmap", "EnhancedVolcano", "clusterProfiler", "enrichplot", "impute", "preprocessCore", "Mfuzz"))

接着安装 此包:

代码语言:javascript
代码运行次数:0
复制
## 从github上安装
# install.packages("devtools")
devtools::install_github("benben-miao/TOmicsVis")

# Resolve network by GitClone
devtools::install_git("https://gitclone.com/github.com/benben-miao/TOmicsVis.git")

## 或者 
# Install from CRAN
# install.packages("TOmicsVis") # 这种办法目前安装不了,需要下载到本地 安装 
# 以前的版本 下载地址:https://cran.r-project.org/src/contrib/Archive/TOmicsVis/
# 本教程使用 TOmicsVis_1.1.8.tar.gz版本
R CMD INSTALL -l /usr/local/software/miniconda3/envs/R4.4/lib/R/library /nas2/zhangj/biosoft/TOmicsVis_1.1.8.tar.gz

# 加载看是否安装成功
library(TOmicsVis)

此包中的示例数据介绍:

代码语言:javascript
代码运行次数:0
复制
data(package='TOmicsVis')

样本相关性热图

代码语言:javascript
代码运行次数:0
复制
###############################################
# 1. Load gene_exp example dataset
data("gene_expression")

# 2. Run corr_heatmap plot function
corr_heatmap(
  gene_expression,
  corr_method = "pearson",
  cell_shape = "square", fill_type = "full",
  lable_size = 3, lable_digits = 3,
  color_low = "blue",color_mid = "white",color_high = "red",
  ggTheme = "theme_light"
)

样本层次聚类图

代码语言:javascript
代码运行次数:0
复制
#####################################################
# 1. Load example datasets
data("gene_expression")

# 2. Run plot function
dendro_plot(
  gene_expression,
  dist_method = "euclidean",hc_method = "average",
  tree_type = "rectangle",k_num = 5,
  palette = "npg",color_labels_by_k = TRUE,horiz = TRUE,
  label_size = 0.8,line_width = 0.7,rect = TRUE,rect_fill = TRUE,
  xlab = "",ylab = "Height",
  ggTheme="theme_default"
)

结果如下:

带比较显著性的多分组箱线图

代码语言:javascript
代码运行次数:0
复制
###########################################################
# 1. Load box_data example datasets
load("TOmicsVis/data/box_data.rda")
head(box_data)
# Value Level1 Level2
# 1   4.0 Group1 GroupA
# 2  11.0 Group1 GroupA
# 3   7.5 Group1 GroupA
# 4   5.5 Group1 GroupA
# 5   6.5 Group1 GroupA
# 6  10.0 Group1 GroupA


# 2. Run box_plot plot function
box_plot(
  box_data,
  test_method = "t.test",
  test_label = "p.format",
  notch = TRUE,
  group_level = "Three_Column",
  add_element = "dotplot",
  my_shape = "fill_circle",
  sci_fill_color = "Sci_AAAS",
  sci_fill_alpha = 0.5,
  sci_color_alpha = 1,
  legend_pos = "right",
  legend_dir = "vertical",
  ggTheme = "theme_light"
)

带比较显著性的多分组小提琴图

代码语言:javascript
代码运行次数:0
复制
########################################################
# 1. Load box_data example datasets
load("TOmicsVis/data/box_data.rda")
head(box_data)
# Value Level1 Level2
# 1   4.0 Group1 GroupA
# 2  11.0 Group1 GroupA
# 3   7.5 Group1 GroupA
# 4   5.5 Group1 GroupA
# 5   6.5 Group1 GroupA
# 6  10.0 Group1 GroupA

# 2. Run violin_plot plot function
violin_plot(
  box_data,
  test_method = "t.test",
  test_label = "p.format",
  group_level = "Three_Column",
  violin_orientation = "vertical",
  add_element = "boxplot",
  element_alpha = 0.5,
  my_shape = "plus_times",
  sci_fill_color = "Sci_AAAS",
  sci_fill_alpha = 0.5,
  sci_color_alpha = 1,
  legend_pos = "right",
  legend_dir = "vertical",
  ggTheme = "theme_light"
)

多分组差异基因韦恩图

输入一个list对象,list中每一个对象为一个差异基因列表:可以绘制2-7组

代码语言:javascript
代码运行次数:0
复制
################################################################################
# 1. Load venn_data example datasets
load("TOmicsVis/data/venn_data.rda")
str(venn_data)

# 'data.frame': 80 obs. of  7 variables:
#   $ Set1: chr  "ISG15" "TTLL10" "HES4" "OR4G4P" ...
# $ Set2: chr  "HES5" "AURKAIP1" "LINC00982" "FAM87B" ...
# $ Set3: chr  "DVL1" "ARHGEF16" "OR4F16" "SKI" ...
# $ Set4: chr  "MATP6P1" "MIR551A" "C1orf222" "MIR200B" ...
# $ Set5: chr  "FAM132A" "AGRN" "WBP1LP6" "KLHL17" ...
# $ Set6: chr  "MATP6P1" "MIR551A" "LINC00115" "ATAD3B" ...
# $ Set7: chr  "SKI" "WASH7P" "MEGF6" "LINC00115" ...


# 2. Run venn_plot plot function
venn_plot(
  venn_data,
  line_type = "blank",
  ellipse_shape = "circle",
  sci_fill_color = "Sci_AAAS",
  sci_fill_alpha = 0.65
)

多分组差异基因韦恩图:花瓣韦恩图

如果超过了7组差异基因,可以试试花瓣韦恩图,展示每组中特有的基因:

代码语言:javascript
代码运行次数:0
复制
#############################################################################
# 1. Load venn_data example datasets
load("TOmicsVis/data/venn_data.rda")
str(venn_data)

# 'data.frame': 80 obs. of  7 variables:
#   $ Set1: chr  "ISG15" "TTLL10" "HES4" "OR4G4P" ...
# $ Set2: chr  "HES5" "AURKAIP1" "LINC00982" "FAM87B" ...
# $ Set3: chr  "DVL1" "ARHGEF16" "OR4F16" "SKI" ...
# $ Set4: chr  "MATP6P1" "MIR551A" "C1orf222" "MIR200B" ...
# $ Set5: chr  "FAM132A" "AGRN" "WBP1LP6" "KLHL17" ...
# $ Set6: chr  "MATP6P1" "MIR551A" "LINC00115" "ATAD3B" ...
# $ Set7: chr  "SKI" "WASH7P" "MEGF6" "LINC00115" ...

# 2. Run plot function
flower_plot(
  venn_data,
  angle = 90,
  a = 0.5,
  b = 2,
  r = 1,
  ellipse_col_pal = "Spectral",
  circle_col = "white",
  label_text_cex = 1
)

掰弯的基因热图

代码语言:javascript
代码运行次数:0
复制
##############################################################################
# 1. Load circos_heatmap_data example datasets
load("TOmicsVis/data/circos_heatmap_data.rda")
head(circos_heatmap_data)

# C1         C2         C3         C4         C5         C6         C7          C8         C9        C10
# R75 -0.9506510 -0.5344837 -1.8143073 -2.8096061  0.3006051  0.8397951  1.8213950  1.82096239  1.4473792  0.3295319
# R37  0.1687673 -0.8899277  1.0512879  1.1280222 -0.1548653 -1.6206053 -0.1545394 -0.98874221 -1.5511611 -0.5418601
# R82 -0.9218046 -0.9452034 -1.0694599 -1.4732691 -0.4075469  0.5395484  0.6790898  0.46208936  1.4784147  1.3846459
# R66 -0.2655065 -2.8540485 -1.2771570  0.1704191 -1.0334192 -0.2080669  0.3800607  1.36065351  0.5352300  1.8598673
# R29  1.6760859  2.5483251  0.1581459  0.9603674  1.2741453 -1.3347987 -3.5297951  0.07318935 -0.7085929 -0.4945589
# R32  1.2459005  1.3215287  3.1338120  1.5618690  1.3473876  0.7551651 -2.1996166 -0.19446911 -0.2471648 -1.4006481

# 2. Run circos_heatmap plot function
circos_heatmap(
  circos_heatmap_data,
  low_color = "#0000ff",
  mid_color = "#ffffff",
  high_color = "#ff0000",
  gap_size = 10,
  cluster_method = "complete",
  distance_method = "euclidean",
  dend_height = 0.2,
  rowname_size = 0.8
)

差异基因火山图

代码语言:javascript
代码运行次数:0
复制
###############################################################################
# 1. Load deg_data example datasets
data(deg_data)
head(deg_data)
# 
# gene log2FoldChange       pvalue         padj
# 1   TSPAN6    -0.37951916 1.110402e-04 8.624777e-04
# 2     DPM1     0.19692044 7.098804e-02 1.925517e-01
# 3    SCYL3     0.03099276 8.197068e-01 9.138939e-01
# 4 C1orf112    -0.08980230 7.453748e-01 8.742951e-01
# 5      CFH     0.41603874 1.435285e-06 1.680276e-05
# 6    FUCA2    -0.24315848 5.171574e-03 2.422830e-02

# 2. Run volcano_plot plot function
volcano_plot(
  deg_data,
  log2fc_cutoff = 1,
  pq_value = "pvalue",
  pq_cutoff = 0.005,
  cutoff_line = "longdash",
  point_shape = "large_circle",
  point_size = 1,
  point_alpha = 0.5,
  color_normal = "#888888",
  color_log2fc = "#008000",
  color_pvalue = "#0088ee",
  color_Log2fc_p = "#ff0000",
  label_size = 3,
  boxed_labels = FALSE,
  draw_connectors = FALSE,
  legend_pos = "right"
)

基因表达趋势图

代码语言:javascript
代码运行次数:0
复制
################################################################################
# 1. Load chord_data example datasets
data(trend_data)
head(trend_data)

# Name Trait1 Trait2 Trait3                Pathway
# 1 gene1    5.1    1.4    3.5 PPAR signaling pathway
# 2 gene2    4.9    1.4    3.0 PPAR signaling pathway
# 3 gene3    4.7    1.3    3.2 PPAR signaling pathway
# 4 gene4    4.6    1.5    3.1 PPAR signaling pathway
# 5 gene5    5.0    1.4    3.6 PPAR signaling pathway
# 6 gene6    5.4    1.7    3.9 PPAR signaling pathway

# 2. Run trend_plot plot function
trend_plot(
  trend_data,
  scale_method = "globalminmax",
  miss_value = "exclude",
  line_alpha = 0.5,
  show_points = TRUE,
  show_boxplot = TRUE,
  num_column = 2,
  xlab = "Traits",
  ylab = "Genes Expression",
  sci_fill_color = "Sci_AAAS",
  sci_fill_alpha = 0.8,
  sci_color_alpha = 0.8,
  legend_pos = "right",
  legend_dir = "vertical",
  ggTheme = "theme_light"
)

基因排序点图

代码语言:javascript
代码运行次数:0
复制
################################################################################
# 1. Load example datasets
data(deg_data)
head(deg_data)

# gene log2FoldChange       pvalue         padj
# 1   TSPAN6    -0.37951916 1.110402e-04 8.624777e-04
# 2     DPM1     0.19692044 7.098804e-02 1.925517e-01
# 3    SCYL3     0.03099276 8.197068e-01 9.138939e-01
# 4 C1orf112    -0.08980230 7.453748e-01 8.742951e-01
# 5      CFH     0.41603874 1.435285e-06 1.680276e-05
# 6    FUCA2    -0.24315848 5.171574e-03 2.422830e-02

# 2. Run plot function
gene_rank_plot(
  data = deg_data,
  log2fc = 1,
  palette = "Spectral",
  top_n = 10,
  genes_to_label = NULL,
  label_size = 5,
  base_size = 12,
  title = "Gene ranking dotplot",
  xlab = "Ranking of differentially expressed genes",
  ylab = "Log2FoldChange"
)
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2024-12-21,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 生信技能树 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • TOmicsVis 包功能描述:
  • 安装
  • 此包中的示例数据介绍:
  • 样本相关性热图
  • 样本层次聚类图
  • 带比较显著性的多分组箱线图
  • 带比较显著性的多分组小提琴图
  • 多分组差异基因韦恩图
  • 多分组差异基因韦恩图:花瓣韦恩图
  • 掰弯的基因热图
  • 差异基因火山图
  • 基因表达趋势图
  • 基因排序点图
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档