前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >回归分析与相关分析的区别和联系

回归分析与相关分析的区别和联系

原创
作者头像
拓端
修改于 2020-09-27 02:15:56
修改于 2020-09-27 02:15:56
2.2K0
举报
文章被收录于专栏:拓端tecdat拓端tecdat

原文链接:http://tecdat.cn/?p=8508

在本节中,我们将首先讨论相关性分析,它用于量化两个连续变量之间的关联(例如,独立变量与因变量之间或两个独立变量之间)。回归分析是评估结果变量与一个或多个风险因素或混杂变量之间关系的相关技术。结果变量也被称为应答或因变量,风险因素和混杂因素被称为预测因子或解释性或独立变量。在回归分析中,因变量表示为“ y”,自变量表示为“ x””。

相关分析

在相关分析中,我们估计了样本相关系数,更具体地说是Pearson乘积矩相关系数。样本相关系数,表示为r,

介于-1和+1之间,并量化两个变量之间的线性关联的方向和强度。两个变量之间的相关性可能是正的(即一个变量的较高水平与另一个变量的较高水平相关)或负的(即一个变量的较高水平与另一个变量的较低水平相关)。

相关系数的符号表示关联的方向。相关系数的大小表示关联的强度。

例如,r = 0.9的相关性表明两个变量之间强烈的正相关,而r = -0.2的相关性表明弱相关性。接近于零的相关性表明两个连续变量之间没有线性关联。

需要注意的是,两个连续变量之间可能存在非线性关联,但相关系数的计算不会检测到这一点。因此,在计算相关系数之前仔细评估数据总是很重要的。图形显示对探索变量之间的关联特别有用。

下图显示了四个假设情景,其中一个连续变量沿着X轴绘制,另一个沿着Y轴绘制。

情景1描述了强烈的正相关(r = 0.9),类似于我们可以看到的婴儿出生体重与出生体重之间的相关性。

情景2描述了我们可能期望看到的年龄与体重指数(其随着年龄增加而增加)之间的较弱关联(r = 0,2)。

情景3可能表明青少年媒体暴露的程度与青少年发起性行为的年龄之间缺乏联系(r大约为0)。

情景4可能描述了每周有氧运动小时数与体脂百分比之间通常观察到的强烈负相关(r = -0.9)。

示例 - 妊娠期和出生体重的相关性

一项小型研究涉及17名婴儿,以调查出生时的胎龄(以周为单位)和出生体重(以克为单位)之间的关联。

我们希望估计胎龄与婴儿出生体重之间的关系。在这个例子中,出生体重是因变量,孕龄是自变量。因此y =出生体重和x =胎龄。数据显示在下图中的散点图中。

每个点代表一个(x,y)对(在这种情况下,孕周,以周为单位,出生体重以克为单位)。请注意,独立变量位于水平轴(或X轴)上,因变量位于垂直轴(或Y轴)上。散点图显示胎龄与出生体重之间存在正向或直接关联。胎龄越短的婴儿出生体重越低,胎龄越长的婴儿出生体重越高的可能性越大。

x和y的方差测量其各自样本均值附近的x分数和y分数的变化性(

正如我们对孕龄所做的那样计算出生体重的方差,如下表所示。

计算总结如下。请注意,我们只是简单地将平均孕龄和出生体重的偏差从上表中的两张表中复制到下表中并进行相乘。

毫不奇怪,样本相关系数表明强正相关。

正如我们所指出的,样本相关系数范围从-1到+1。在实践中,对于正面(或负面)关联而言,有意义的相关性(即临床上或实际上重要的相关性)可小至0.4(或-0.4)。还有统计测试来确定观察到的相关性是否具有统计显着性(即统计显着性不同于零)。 

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
统计计量 | 吸烟的人更长寿?冰淇淋销量越好溺亡人数越多?——相关分析概述
所谓联,这里指的就是事物之间的相互影响、相互制约、相互印证的关系。而事物这种相互影响、相互关联的关系,在统计学上就叫做相关关系,简称相关性。
Ai学习的老章
2021/10/11
1.4K0
相关性分析的五种方法有哪些_数据相关性分析
相关分析(Analysis of Correlation)是网站分析中经常使用的分析方法之一。通过对不同特征或数据间的关系进行分析,发现业务运营中的关键影响及驱动因素。并对业务的发展进行预测。本篇文章将介绍5种常用的分析方法。在开始介绍相关分析之前,需要特别说明的是相关关系不等于因果关系。
全栈程序员站长
2022/11/15
24K0
相关性分析的五种方法有哪些_数据相关性分析
北大@Coursera 医学统计学与SPSS软件 第六周 直线回归与相关
直线回归(linear regression)用直线方程表达 X和Y 之间的数量依存关系。X常作为自变量(independent variable),Y 常作为因变量(dependent variable)。
Ai学习的老章
2019/04/10
1.6K0
北大@Coursera 医学统计学与SPSS软件 第六周   直线回归与相关
数据分析之相关分析
描述性分析只能分析数据呈现出来的基本特征,不能挖掘变量之间深层次的关系,无法为后期模型的建立及预测做准备。这个时候就需要掌握推断性分析方法,第一个方法就是相关分析。
黄成甲
2018/09/12
1.3K0
数据分析之相关分析
【Excel系列】Excel数据分析:相关与回归分析
相关系数 15.1 相关系数的概念 著名统计学家卡尔·皮尔逊设计了统计指标——相关系数(Correlation coefficient)。相关系数是用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。 依据相关现象之间的不同特征,其统计指标的名称有所不同。如将反映两变量间线性相关关系的统计指标称为相关系数(相关系数的平方称为判定系数);将反映两变量间曲线相关关系的统计指标称为非线性相关
数据科学社区
2018/02/02
7.8K0
【Excel系列】Excel数据分析:相关与回归分析
R语言偏相关和典型相关分析
这个数据有3列,现在我们要探索身高(height)和体重(weight)的关系,其中vc是需要控制的因素。
医学和生信笔记
2022/11/15
1.3K0
R语言偏相关和典型相关分析
对比R语言和Python,教你实现回归分析
r的取值范围是[-1,1],r=1表示完全正相关!r=-1表示完全负相关!r=0表示完全不相关。
1480
2020/03/03
1.9K0
数据分享|多变量多元多项式曲线回归线性模型分析母亲吸烟对新生婴儿体重影响可视化|附代码数据
本文使用的数据集记录了 1236 名新生婴儿的体重(查看文末了解数据获取方式),以及他们母亲的其他协变量
拓端
2022/11/08
8180
批量相关分析,听说你找好久了?
相关关系:当一个或几个相互联系的变量取一定的数值时,与之相对应的另一变量的值虽然不确定,但它仍按某种规律一定的范围内变化。变量间的这种相互关系,称为具有不确定性的相关关系。
用户6317549
2020/04/16
2.6K0
多元统计分析:典型相关分析
类似PCA的做法: 每组 变量 中 选择 若干代表性 综合指标(变量的线性组合),通过 研究 两组 综合指标 间关系 来反映 两组变量间 相关关系 即 线性组合 之间的相关关系 步骤:
yiyun
2022/04/01
1.1K0
多元统计分析:典型相关分析
实用的典型相关分析(多公式预警)
在sklearn的交叉分解模块中有两种典型算法族,一个是本文所述的典型相关分析算法(CCA),一个是偏最小二乘算法(PLS),他们都是具有发现两个多元数据集之间的线性关系的用途,本文先解释典型相关分析。
用户7506105
2021/08/06
1K0
【学习】spss中如何做相关分析
相关分析是很基础的一种分析方法,接触spss的同学很快就会学习到想相关分析。虽然他很基础,但是在做很多高级分析之前,都要进行相关分析。这篇问文章就系统的和大家分享一下spss里如何做相关分析。 在spss中相关分析主要分为三大类,分别是双变量相关分析,偏相关分析和距离相关分析。 1、双变量相关分析主要研究两个变量数量之间的相关性。它又分为pearson相关分析,kendall相关分析,kendall等级相关分析,还有spearmen等级相关分析这四种。 Pearson相关分
小莹莹
2018/04/18
2.8K0
Python数据科学:相关分析
目前手上有两本书,一本《利用Python进行数据分析》,一本《Python数据科学》。
小F
2020/10/09
4490
Python数据科学:相关分析
数据分析之回归分析
回归,最初是遗传学中的一个名词,是由生物学家兼统计学家高尔顿首先提出来的。他在研究人类的身高时,发现高个子回归于人口的平均身高,而矮个子则从另一个方向回归于人口的平均身高。
黄成甲
2018/09/12
3.7K0
数据分析之回归分析
统计学中常用的数据分析方法汇总
描述统计是通过图表或数学方法,对数据资料进行整理、分析,并对数据的分布状态、数字特征和随机变量之间关系进行估计和描述的方法。描述统计分为集中趋势分析和离中趋势分析和相关分析三大部分。
Ai学习的老章
2019/08/23
3.6K0
推荐收藏 | 统计学 常用的数据分析方法大总结!
描述统计是通过图表或数学方法,对数据资料进行整理、分析,并对数据的分布状态、数字特征和随机变量之间关系进行估计和描述的方法。描述统计分为集中趋势分析和离中趋势分析和相关分析三大部分。
Sam Gor
2019/09/09
1.5K0
推荐收藏 | 统计学常用的数据分析方法大总结!
描述统计是通过图表或数学方法,对数据资料进行整理、分析,并对数据的分布状态、数字特征和随机变量之间关系进行估计和描述的方法。描述统计分为集中趋势分析和离中趋势分析和相关分析三大部分。
1480
2019/10/10
9940
推荐收藏 | 统计学常用的数据分析方法大总结!
python数据分析——在面对各种问题时,因如何做分析的分类汇总
Python数据分析是指使用Python编程语言对数据进行收集、处理、分析和可视化的过程。Python是一种非常流行的编程语言,具有简单易学、代码可读性高、生态系统强大的特点,因此在数据科学领域得到广泛应用。
鲜于言悠
2024/03/20
4140
python数据分析——在面对各种问题时,因如何做分析的分类汇总
技能 | 如何使用Excel数据分析工具进行多元回归分析
使用Excel数据分析工具进行多元回归分析与简单的回归估算分析方法基本相同。但是由于有些电脑在安装办公软件时并未加载数据分析工具,所以从加载开始说起(以Excel2010版为例,其余版本都可以在相应界
CDA数据分析师
2018/02/11
6.9K0
技能 | 如何使用Excel数据分析工具进行多元回归分析
【干货】统计学最常用的「数据分析方法」清单(上)
描述统计是通过图表或数学方法,对数据资料进行整理、分析,并对数据的分布状态、数字特征和随机变量之间关系进行估计和描述的方法。描述统计分为集中趋势分析和离中趋势分析和相关分析三大部分。
1480
2020/06/01
1.7K0
推荐阅读
相关推荐
统计计量 | 吸烟的人更长寿?冰淇淋销量越好溺亡人数越多?——相关分析概述
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档