目前学术界一般将NLP任务的发展分为四个阶段,即NLP四范式:
Fine-Tuning属于一种迁移学习方式,在自然语言处理(NLP)中,Fine-Tuning是用于将预训练的语言模型适应于特定任务或领域。Fine-Tuning的基本思想是采用已经在大量文本上进行训练的预训练语言模型,然后在小规模的任务特定文本上继续训练它。
经典的Fine-Tuning方法包括将预训练模型与少量特定任务数据一起继续训练。在这个过程中,预训练模型的权重被更新,以更好地适应任务。所需的Fine-Tuning量取决于预训练语料库和任务特定语料库之间的相似性。如果两者相似,可能只需要少量的Fine-Tuning,如果两者不相似,则可能需要更多的Fine-Tuning.
但是,在大多数下游任务微调时,下游任务的目标和预训练的目标差距过大导致提升效果不明显(过拟合),微调过程中需要依赖大量的监督语料等等。至此,以GPT3、PET等为首的模型提出一种基于预训练语言模型的新的微调范式--Prompt-Tuning.该方法的目的是通过添加模板的方法来避免引入额外的参数,从而让模型可以在小样本(few-shot)或者零样本(zero-shot)场景下达到理想的效果。
Prompt-Tuning主要解决传统Fine-Tuning方式的两个痛点:
prompt顾名思义就是“提示”的意思,应该有人玩过你画我猜这个游戏吧,对方根据一个词语画一幅画,我们来猜他画的是什么,因为有太多灵魂画手了,画风清奇,或者你们没有心有灵犀,根本就不好猜啊!这时候屏幕上会出现一些提示词比如3个字,水果,那岂不是好猜一点了嘛,毕竟3个字的水果也不多呀。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。