这些模型捕获了线性时间序列模型无法捕获的行为,例如周期,幅度相关的频率和跳跃现象。Tong和Lim(1980)使用阈值模型表明,该模型能够发现黑子数据出现的不对称周期性行为。 一阶TAR模型的示例:
σ是噪声标准偏差,Yt-1是阈值变量,r是阈值参数, {et}是具有零均值和单位方差的iid随机变量序列。
每个线性子模型都称为一个机制。上面是两个机制的模型。
考虑以下简单的一阶TAR模型:
#低机制参数
i1 = 0.3
p1 = 0.5
s1 = 1
#高机制参数
i2 = -0.2
p2 = -1.8
s2 = 1
thresh = -1
delay = 1
#模拟数据
y=sim(n=100,Phi1=c(i1,p1),Phi2=c(i2,p2),p=1,d=delay,sigma1=s1,thd=thresh,sigma2=s2)$y
#绘制数据
plot(y=y,x=1:length(y),type='o',xlab='t',ylab=expression(Y\[t\])
abline(thresh,0,col="red")