前往小程序,Get更优阅读体验!
立即前往
发布
社区首页 >专栏 >R语言时间序列TAR阈值自回归模型

R语言时间序列TAR阈值自回归模型

作者头像
拓端
发布2025-01-09 20:33:41
发布2025-01-09 20:33:41
8800
代码可运行
举报
文章被收录于专栏:拓端tecdat拓端tecdat
运行总次数:0
代码可运行

这些模型捕获了线性时间序列模型无法捕获的行为,例如周期,幅度相关的频率和跳跃现象。Tong和Lim(1980)使用阈值模型表明,该模型能够发现黑子数据出现的不对称周期性行为。 一阶TAR模型的示例:

σ是噪声标准偏差,Yt-1是阈值变量,r是阈值参数, {et}是具有零均值和单位方差的iid随机变量序列。

每个线性子模型都称为一个机制。上面是两个机制的模型。

考虑以下简单的一阶TAR模型:

代码语言:javascript
代码运行次数:0
复制
#低机制参数


i1 = 0.3
p1 = 0.5
s1 = 1

#高机制参数


i2 = -0.2
p2 = -1.8
s2 = 1

thresh = -1
delay = 1

#模拟数据
y=sim(n=100,Phi1=c(i1,p1),Phi2=c(i2,p2),p=1,d=delay,sigma1=s1,thd=thresh,sigma2=s2)$y

#绘制数据


plot(y=y,x=1:length(y),type='o',xlab='t',ylab=expression(Y\[t\])
abline(thresh,0,col="red")
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2025-01-08,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 拓端数据部落 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档