前往小程序,Get更优阅读体验!
立即前往
发布
社区首页 >专栏 >【大数据技术基础 | 实验十四】Kafka实验:订阅推送示例

【大数据技术基础 | 实验十四】Kafka实验:订阅推送示例

作者头像
Francek Chen
发布2025-01-22 23:01:14
发布2025-01-22 23:01:14
7600
代码可运行
举报
运行总次数:0
代码可运行

一、实验目的

  1. 掌握Kafka的安装部署
  2. 掌握Kafka的topic创建及如何生成消息和消费消息
  3. 掌握Kafka和Zookeeper之间的关系
  4. 了解Kafka如何保存数据及加深对Kafka相关概念的理解

二、实验要求

在两台机器上(以slave1,slave2为例),分别部署一个broker,Zookeeper使用的是单独的集群,然后创建一个topic,启动模拟的生产者和消费者脚本,在生产者端向topic里写数据,在消费者端观察读取到的数据。

三、实验原理

(一)Kafka简介

Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。它提供了类似于JMS的特性,但是在设计实现上完全不同,此外它并不是JMS规范的实现。kafka对消息保存时根据Topic进行归类,发送消息者成为Producer,消息接受者成为Consumer,此外kafka集群有多个kafka实例组成,每个实例(server)成为broker。无论是kafka集群,还是producer和consumer都依赖于zookeeper来保证系统可用性集群保存一些meta信息。如图下所示:

一个Topic的多个partitions,被分布在kafka集群中的多个server上;每个server(kafka实例)负责partitions中消息的读写操作;此外kafka还可以配置partitions需要备份的个数(replicas),每个partition将会被备份到多台机器上,以提高可用性。

基于replicated方案,那么就意味着需要对多个备份进行调度;每个partition都有一个server为“leader”;leader负责所有的读写操作,如果leader失效,那么将会有其他follower来接管(成为新的leader);follower只是单调的和leader跟进,同步消息即可……由此可见作为leader的server承载了全部的请求压力,因此从集群的整体考虑,有多少个partitions就意味着有多少个“leader”,kafka会将“leader”均衡的分散在每个实例上,来确保整体的性能稳定。

生产者:Producer将消息发布到指定的Topic中,同时Producer也能决定将此消息归属于哪个partition;比如基于“round-robin”方式或者通过其他的一些算法等。

消费者:本质上kafka只支持Topic,每个consumer属于一个consumer group;反过来说,每个group中可以有多个consumer。发送到Topic的消息,只会被订阅此Topic的每个group中的一个consumer消费。

如果所有的consumer都具有相同的group,这种情况和queue模式很像;消息将会在consumers之间负载均衡。

如果所有的consumer都具有不同的group,那这就是“发布-订阅”;消息将会广播给所有的消费者。

在kafka中,一个partition中的消息只会被group中的一个consumer消费;每个group中consumer消息消费互相独立;我们可以认为一个group是一个“订阅”者,一个Topic中的每个partions,只会被一个“订阅者”中的一个consumer消费,不过一个consumer可以消费多个partitions中的消息。kafka只能保证一个partition中的消息被某个consumer消费时,消息是顺序的。事实上,从Topic角度来说,消息仍不是有序的。

kafka的设计原理决定,对于一个topic,同一个group中不能有多于partitions个数的consumer同时消费,否则将意味着某些consumer将无法得到消息。

Guarantees

(1)发送到partitions中的消息将会按照它接收的顺序追加到日志中。

(2)对于消费者而言,它们消费消息的顺序和日志中消息顺序一致。

(3)如果Topic的“replicationfactor”为N,那么允许N-1个kafka实例失效。

(二)Kafka使用场景

1. Messaging

对于一些常规的消息系统,kafka是个不错的选择;partitons/replication和容错,可以使kafka具有良好的扩展性和性能优势。不过到目前为止,我们应该很清楚认识到,kafka并没有提供JMS中的“事务性”、“消息传输担保(消息确认机制)”、“消息分组”等企业级特性;kafka只能使用作为“常规”的消息系统,在一定程度上,尚未确保消息的发送与接收绝对可靠(比如:消息重发,消息发送丢失等)。

2. Websit activity tracking

kafka可以作为“网站活性跟踪”的最佳工具;可以将网页/用户操作等信息发送到kafka中。并实时监控,或者离线统计分析等。

3. Log Aggregation

kafka的特性决定它非常适合作为“日志收集中心”,application可以将操作日志“批量”“异步”的发送到kafka集群中,而不是保存在本地或者DB中;kafka可以批量提交消息/压缩消息等,这对producer端而言,几乎感觉不到性能的开支。此时consumer端可以使hadoop等其他系统化的存储和分析系统。

四、实验环境

  • 云创大数据实验平台:
  • Java 版本:jdk1.7.0_79
  • Hadoop 版本:hadoop-2.7.1
  • ZooKeeper 版本:zookeeper-3.4.6
  • Kafka 版本:kafka_2.10-0.9.0.1

五、实验内容和步骤

(一)配置各服务器之间的免密登录

首先配置master,slave1和slave2之间的免密登录和各虚拟机的/etc/hosts文件,具体步骤参考:【大数据技术基础 | 实验一】配置SSH免密登录

(二)安装ZooKeeper集群

配置完免密登录之后我们还需要安装Zookeeper集群,具体步骤参考:【大数据技术基础 | 实验五】ZooKeeper实验:部署ZooKeeper

(三)安装Kafka集群

首先我们将Kafka安装包解压到slave1的/usr/cstor目录:

代码语言:javascript
代码运行次数:0
复制
tar -zxvf kafka_2.10-0.9.0.1.tar.gz -c /usr/cstor

并将kafka目录所属用户改成root:root

代码语言:javascript
代码运行次数:0
复制
chown -R root:root /usr/cstor/kafka

然后将kafka目录传到其他机器上:

代码语言:javascript
代码运行次数:0
复制
scp -r /usr/cstor/kafka hadoop@slave2:/usr/cstor

两台机器上分别进入解压目录下,在config目录修改server.properties文件:

代码语言:javascript
代码运行次数:0
复制
cd /usr/cstor/kafka/config/
vim server.properties

然后修改其中的内容,首先是slave1配置:

代码语言:javascript
代码运行次数:0
复制
#broker.id
broker.id=1
#broker.port
port=9092
#host.name
host.name=slave1
#本地日志文件位置
log.dirs=/usr/cstor/kafka/logs
#Zookeeper地址
zookeeper.connect=slave1:2181,slave2:2181,master:2181

然后修改slave2的配置:

代码语言:javascript
代码运行次数:0
复制
#broker.id
broker.id=2
#broker.port
port=9092
#host.name
host.name=slave2
#本地日志文件位置
log.dirs=/usr/cstor/kafka/logs
#Zookeeper地址
zookeeper.connect=slave1:2181,slave2:2181,master:2181

然后,启动Kafka,并验证Kafka功能,进入安装目录下的bin目录,两台机器上分别执行以下命令启动各自的Kafka服务:

代码语言:javascript
代码运行次数:0
复制
cd /usr/cstor/kafka/bin
nohup ./kafka-server-start.sh ../config/server.properties &

在任意一台机器上,执行以下命令(以下三行命令不要换行,是一整行)创建topic:

代码语言:javascript
代码运行次数:0
复制
./kafka-topics.sh --create \
--zookeeper slave1:2181,slave2:2181,master:2181 \
--replication-factor 2 --partitions 2 --topic test

在任意一台机器上(这里我选择的是slave1),执行以下命令(以下三行命令不要换行,是一整行)启动模拟producer:

代码语言:javascript
代码运行次数:0
复制
./kafka-console-producer.sh \
--broker-list slave1:9092,slave2:9092,master:9092 \
--topic test

在另一台机器上(slave2),执行以下命令(以下三行命令不要换行,是一整行)启动模拟consumer:

代码语言:javascript
代码运行次数:0
复制
./kafka-console-consumer.sh \
--zookeeper slave1:2181,slave2:2181,master:2181 \
--topic test --from-beginning
(四)验证消息推送

我们在producer端输入任意信息,然后观察consumer端接收到的数据:

代码语言:javascript
代码运行次数:0
复制
This is Kafka producer
Hello, Kafka

在slave1上输入信息:

然后slave2上也收到了信息:

六、实验结果

我们在producer端输入任意信息,然后观察consumer端接收到的数据:

代码语言:javascript
代码运行次数:0
复制
This is Kafka producer
Hello, Kafka

在slave1上输入信息:

然后slave2上也收到了信息:

七、实验心得

  通过本次Kafka实验,我深入理解了分布式消息队列的核心概念及其实现方式。Kafka作为一种高吞吐量、低延迟的分布式发布订阅消息系统,其设计思想和实现细节让我受益匪浅。实验从Kafka与Zookeeper的安装部署入手,通过配置两个broker的Kafka集群,帮助我掌握了Kafka集群的基本搭建过程。同时,通过配置文件的修改,我更加清晰地认识到Kafka集群中broker.idzookeeper.connectlog.dirs等配置项的作用,为后续的生产环境部署打下了基础。

  实验中的生产者和消费者模拟验证让我直观地感受到了Kafka的高效数据处理能力。在生产者端输入消息后,消费者端能够实时接收到消息,这充分展示了Kafka在消息传递中的低延迟特点。此外,通过创建带有多个分区和副本的Topic,我理解了Kafka的分区机制及其在分布式环境中保证数据高可用性的策略。分区的Leader和Follower模型也让我体会到Kafka在负载均衡和容错性上的精巧设计,尤其是当Leader失效后,Follower能够及时接管,确保服务的稳定运行。

  与此同时,我也意识到Kafka在实际应用中并非完美。例如,Kafka虽然具有一定的容错能力,但对于数据的绝对可靠性保证(如消息丢失或重复发送)还有一定的局限性。这让我认识到,在实际项目中,需根据具体场景搭配其他机制来保证消息传递的可靠性和一致性。

  总之,本次实验帮助我从理论走向实践,不仅熟悉了Kafka的基本操作,还加深了对其内部工作原理的理解。在未来的学习和工作中,我希望能够进一步探索Kafka在日志收集、实时数据流处理等场景中的深度应用,为分布式系统的设计与优化积累更多经验。

:以上文中的数据文件及相关资源下载地址: 链接:https://pan.quark.cn/s/8f386ae8b871 提取码:EPKB

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-12-03,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、实验目的
  • 二、实验要求
  • 三、实验原理
    • (一)Kafka简介
    • (二)Kafka使用场景
  • 四、实验环境
  • 五、实验内容和步骤
    • (一)配置各服务器之间的免密登录
    • (二)安装ZooKeeper集群
    • (三)安装Kafka集群
    • (四)验证消息推送
  • 六、实验结果
  • 七、实验心得
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档