前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >【机器学习-神经网络】循环神经网络

【机器学习-神经网络】循环神经网络

作者头像
Francek Chen
发布2025-01-22 23:28:16
发布2025-01-22 23:28:16
16000
代码可运行
举报
运行总次数:0
代码可运行

机器学习是一门人工智能的分支学科,通过算法和模型让计算机从数据中学习,进行模型训练和优化,做出预测、分类和决策支持。Python成为机器学习的首选语言,依赖于强大的开源库如Scikit-learn、TensorFlow和PyTorch。本专栏介绍机器学习的相关算法以及基于Python的算法实现。

【GitCode】专栏资源保存在我的GitCode仓库:https://gitcode.com/Morse_Chen/Python_machine_learning


  在前面两篇文章中,我们分别介绍了神经网络的基础概念和最简单的MLP,以及适用于图像处理的CNN。从中我们可以意识到,不同结构的神经网络具有不同的特点,在不同任务上具有自己的优势。例如MLP复杂度低、训练简单、适用范围广,适合解决普通任务或作为大型网络的小模块;CNN可以捕捉到输入中不同尺度的关联信息,适合从图像中提取特征。而对于具有序列特征的数据,例如一年内随时间变化的温度、一篇文章中的文字等,它们具有明显的前后关联。然而这些关联的数据在序列中出现的位置可能间隔非常远,例如文章在开头和结尾描写了同一个事物,如果用CNN来提取这些关联的话,其卷积核的大小需要和序列的长度相匹配。当数据序列较长时,这种做法会大大增加网络复杂度和训练难度。因此,我们需要引入一种新的网络结构,使其能够充分利用数据的序列性质,从前到后分析数据、提取关联。这就是本文要介绍的循环神经网络(recurrent neural networks,RNN)。

一、循环神经网络的基本原理

  我们先从最简单的模型开始考虑。对于不存在序列关系的数据,我们采用一个两层的MLP来拟合它,如图1(a)所示,输入样本为

\boldsymbol x

,经过第一个权重为

\boldsymbol W_i

\boldsymbol b_i

的隐层得到中间向量

\boldsymbol h = \boldsymbol f_h(\boldsymbol W_i\boldsymbol x+\boldsymbol b_i)

,再经过权重为

\boldsymbol W_o

\boldsymbol b_o

的隐层得到输出

\boldsymbol y = f_o(\boldsymbol W_o\boldsymbol h+\boldsymbol b_o)

,其中

f_h

f_o

为激活函数。这是一个标准的MLP的预测流程。

图1 从MLP到RNN

  假设数据集中的数据分别是在时刻1和时刻2采集到的,并且我们知道时刻2的结果与时刻1有关。这时,由于两个时刻的数据产生了依赖关系,如果我们用相同的模型权重来进行预测而忽略其关联,预测的准确度就会降低。为了利用上额外的关联信息,我们将MLP的结构拓展一下,如图1(b)所示,第二个MLP的中间向量与一般的MLP不同。在计算时刻2的中间向量

\boldsymbol h_2

时,我们将时刻1的中间向量

\boldsymbol h_1

也纳入进来,得到

\boldsymbol h_2 = f_h(\boldsymbol W_h\boldsymbol h_1+\boldsymbol W_i\boldsymbol x_2+\boldsymbol b_i)

,再将

\boldsymbol h_2

传给第二个隐层,计算出输出

y_2=f_o(\boldsymbol W_o\boldsymbol h_2+\boldsymbol b_o)

。这样,我们就在时刻2的预测中用到了时刻1的信息。如果将这种思想进一步扩展,如图1(c)所示,我们可以将MLP沿着序列不断扩展下去,中间的每个MLP都将上一时刻的中间向量

\boldsymbol h_{t-1}

与当前的输入

\boldsymbol x_t

组合得到中间向量,再进行后续处理。同时,由于序列中每一位置之间又存在对称性,为了减小网络的复杂度,每一MLP前后的权重与中间组合的权重可以共用,不随序列位置变化。因此,这样重复的网络结构可以用图2中的循环来表示,称为循环神经网络。

图2 RNN的循环表示

  RNN的输入与输出并不一定要像上面展示的一样,在每一时刻都有一个输入样本和一个预测输出。根据任务的不同,RNN的输入输出对应可以有多种形式。图3展示了一些不同对应形式的RNN结构,从左到右依次是一对多、多对一、同步多对多和异步多对多,它们都有合适的任务场景。例如,如果我们要根据一个关键词生成一句话,以词语作为最小单元,那么RNN的输入只有一个,而生成的句子需要有连贯的含义和语义,因此可以利用RNN在每一时刻输出一个词,从前到后连成完整的句子。这样的任务就更适合采用一对多的结构。再比如,常见的时间序列预测任务需要我们根据一段时间中收集的数据,预测接下来一定时间内数据的情况。这时,我们就可以用异步多对多的结构,先分析样本的规律和特征,再生成紧接着样本所在时间之后的结果。

图3 适用与不同任务的RNN结构

  当我们训练RNN时,由于每一时刻的中间向量都会组合上一时刻的中间向量,如果把时刻

t

的中间向量全部展开,就得到

\begin{aligned} \boldsymbol h_t &= f_h(\boldsymbol W_h\boldsymbol h_{t-1}+\boldsymbol W_i\boldsymbol x_t+\boldsymbol b_i) \\ &= f_h(\boldsymbol W_hf_h(\boldsymbol W_h\boldsymbol h_{t-2}+\boldsymbol W_i\boldsymbol x_{t-1}+\boldsymbol b_i)+\boldsymbol W_i\boldsymbol x_t+\boldsymbol b_i) \\ &= \cdots \\ &= f_h(\boldsymbol W_hf_h(\cdots\boldsymbol W_hf_h(\boldsymbol W_h(\boldsymbol W_i\boldsymbol x_1+\boldsymbol b_i)+\boldsymbol W_i\boldsymbol x_2+\boldsymbol b_i)\cdots)+\boldsymbol W_i\boldsymbol x_t+\boldsymbol b_i) \end{aligned}

  如果在时刻

t

存在输出,我们可计算时刻

t

的损失函数,并使用梯度回传方法优化参数。然而,随着反向传播的步数增加,RNN有可能会出现梯度消失或梯度爆炸的现象。为了详细解释这一现象,我们考虑时刻

t

的损失

\mathcal L_t

关于参数

\boldsymbol W_i

的导数。根据求导的链式法则,我们可以计算如下:

\begin{aligned} \frac{\partial\mathcal L_t}{\partial\boldsymbol W_i} &= \frac{\partial\mathcal L_t}{\partial y_t}\frac{\partial y_t}{\partial\boldsymbol W_i} \\[2ex] &= \frac{\partial\mathcal L_t}{\partial y_t}\frac{\partial y_t}{\partial\boldsymbol h_t}\frac{\mathrm d\boldsymbol h_t}{\mathrm d\boldsymbol W_i} \\[2ex] &= \frac{\partial\mathcal L_t}{\partial y_t}\frac{\partial y_t}{\partial\boldsymbol h_t}\left(\frac{\partial\boldsymbol h_t}{\partial\boldsymbol W_i}+\frac{\partial\boldsymbol h_t}{\partial\boldsymbol h_{t-1}}\frac{\mathrm d\boldsymbol h_{t-1}}{\mathrm d\boldsymbol W_i}\right) \\[2ex] &= \cdots \\[1ex] &= \frac{\partial\mathcal L_t}{\partial y_t}\frac{\partial y_t}{\partial\boldsymbol h_t}\left(\frac{\partial\boldsymbol h_t}{\partial\boldsymbol W_i}+\frac{\partial\boldsymbol h_t}{\partial\boldsymbol h_{t-1}}\frac{\partial\boldsymbol h_{t-1}}{\partial\boldsymbol W_i}+\cdots+\frac{\partial\boldsymbol h_t}{\partial\boldsymbol h_{t-1}}\frac{\partial\boldsymbol h_{t-1}}{\partial\boldsymbol h_{t-2}}\cdots\frac{\partial\boldsymbol h_2}{\partial\boldsymbol h_1}\frac{\partial\boldsymbol h_1}{\partial\boldsymbol W_i}\right) \\[2ex] &= \frac{\partial\mathcal L_t}{\partial y_t}\frac{\partial y_t}{\partial\boldsymbol h_t}\left(\frac{\partial\boldsymbol h_t}{\partial\boldsymbol W_i}+\sum_{j=1}^{t-1}\left(\prod_{k=j+1}^t\frac{\partial\boldsymbol h_k}{\partial\boldsymbol h_{k-1}}\right)\frac{\partial\boldsymbol h_j}{\partial\boldsymbol W_i}\right) \end{aligned}

\begin{aligned}\frac{\partial\boldsymbol h_k}{\partial\boldsymbol h_{k-1}}=f'_h\boldsymbol W_h\end{aligned}

\begin{aligned}\frac{\partial\boldsymbol h_k}{\partial\boldsymbol W_i}=\boldsymbol x_k\end{aligned}

代入,就得到

\frac{\partial\mathcal L_t}{\partial\boldsymbol W_i} = \frac{\partial\mathcal L_t}{\partial y_t}\frac{\partial y_t}{\partial\boldsymbol h_t}\left(\boldsymbol x_t+\sum_{j=1}^{t-1}\left(\prod_{k=j+1}^tf'_h\boldsymbol W_h\right)\boldsymbol x_j\right)

  观察上式可以发现,梯度中会出现一些

f'_h\boldsymbol W_h

的连乘项。如果

f'_h\boldsymbol W_h<1

,当时刻

t

与时刻

j

距离较远时,该连乘的值就会趋近于0,因此由时刻

t

的损失函数计算出的梯度在回传时会逐渐消失;反之,如果

f'_h\boldsymbol W_h>1

,该连乘会趋于无穷大,梯度在回传时会出现发散的现象。我们将这两种情况分别称为梯度消失和梯度爆炸。无论出现哪种情况,网络的参数都无法正常更新,模型的性能也会大打折扣。当出现梯度消失时,时刻

t

的梯度只能影响时刻

t

之前的少数几步,而无法影响到较远的位置。换句话说,距离时刻

t

较远的信息已经丢失,模型很难捕捉到序列中的长期关联。而当出现梯度爆炸时,网络的梯度会迅速发散,出现数值溢出等错误。

  为了防止上述现象发生,最简单的做法是对梯度进行裁剪,为梯度设置上限和下限,当梯度过大或过小时,直接用上下限来代替梯度的值。但是,这种做法在复杂情况下仍然会导致信息丢失,通常只作为一种辅助手段。我们还可以选用合适的激活函数

f_h

并调整网络参数

\boldsymbol W_h

初始化的值,使得乘积

f'_h\boldsymbol W_h

始终稳定在1附近。但是,随着网络参数不断更新,

\boldsymbol W_h

总会变化,要始终控制它们的乘积比较困难。因此,我们可以将网络中关联起相邻两步的

f_h

\boldsymbol W_h

扩展成一个小的网络,通过设计其结构来达到稳定梯度的目的。

二、门控循环单元

  本节,我们就来介绍一种较为简单的设计——门控循环单元(gated recurrent unit,GRU)。为了解决梯度消失与梯度爆炸的问题,GRU在普通RNN的设计上进行改进,通过门控单元来调整

\boldsymbol h_t

\boldsymbol h_{t-1}

的关系。我们不妨将输入

\boldsymbol x_t

理解为外部输入的信息,

\boldsymbol h_t

理解为网络记住的信息,它从时刻1的

\boldsymbol h_1

开始向后传递。然而,由于模型本身复杂度的限制,模型并不需要、也无法将所有时刻的信息都保留下来。因此,在由上一时刻的信息

\boldsymbol h_{t-1}

计算

\boldsymbol h_t

时,必须有选择地进行遗忘。同时,在时刻

t

有新的信息

\boldsymbol x_t

输入进网络,我们需要在过去的信息

\boldsymbol h_{t-1}

与新信息

\boldsymbol x_t

之间做到平衡。

  图4展示了GRU单元的内部结构,GRU设置的门控单元共有两个,分别称为更新门和重置门。每个门控单元输出一个数值或向量,由上一时刻的信息

\boldsymbol h_{t-1}

和当前时刻的输入

\boldsymbol x_t

组合计算得到

\begin{aligned} \boldsymbol z_t = \sigma(\boldsymbol W_z\boldsymbol x_t+\boldsymbol U_z\boldsymbol h_{t-1}+\boldsymbol b_z) \\ \boldsymbol r_t = \sigma(\boldsymbol W_r\boldsymbol x_t+\boldsymbol U_r\boldsymbol h_{t-1}+\boldsymbol b_r) \end{aligned}

其中,

\boldsymbol z_t

是更新单元,

\boldsymbol r_t

是重置单元,

\boldsymbol W_z

\boldsymbol W_r

\boldsymbol U_z

\boldsymbol U_r

\boldsymbol b_z

\boldsymbol b_r

都是网络的参数,

\sigma

是逻辑斯谛函数,从而门控单元的值都在

(0,1)

区间内。

图4 GRU结构示意

  虽然这两个单元的计算方式完全相同,但是接下来它们会发挥不同的作用。利用重置单元

\boldsymbol r_t

,我们对过去的信息

\boldsymbol h_{t-1}

进行选择性遗忘:

\boldsymbol h'_{t-1}=\boldsymbol r_t\odot\boldsymbol h_{t-1}

其中,

\odot

称为阿达马积(Hadamard product),表示向量或矩阵的逐元素相乘。例如,形状均为

m\times n

的矩阵

\boldsymbol A

\boldsymbol B

的阿达玛积为

\boldsymbol{\boldsymbol A\odot\boldsymbol B} = \begin{pmatrix} a_{11}b_{11} &a_{12}b_{12} &\cdots &a_{1n}b_{1n} \\ a_{21}b_{21} &a_{22}b_{22} &\cdots &a_{2n}b_{2n} \\ \vdots &\vdots\ & &\vdots \\ a_{m1}b_{m1} &a_{m2}b_{m2} &\cdots &a_{mn}b_{mn} \end{pmatrix}

\boldsymbol r_t

某一维度的值接近0时,网络就更倾向于遗忘

\boldsymbol h_{t-1}

的相应维度;反之,当

\boldsymbol r_t

某一维度的值接近1时,网络更倾向于保留

\boldsymbol h_{t-1}

的相应维度。之后,我们再将重置过的

\boldsymbol h'_{t-1}

\boldsymbol x_t

组合,得到

\hat{\boldsymbol h}_t

\hat{\boldsymbol h}_t=\tanh(\boldsymbol W_h\boldsymbol x_t+\boldsymbol U_h\boldsymbol h'_{t-1}+\boldsymbol b_h)

这里得到的

\hat{\boldsymbol h}_t

混合了当前的

\boldsymbol x_t

与部分过去的信息

\boldsymbol h'_{t-1}

,并由

\tanh

函数映射到了

(-1,1)

范围内。观察上式与普通RNN的更新方式

\boldsymbol h_t = f_h(\boldsymbol W_i\boldsymbol x_i+\boldsymbol W_h\boldsymbol h_{t-1}+\boldsymbol b_t)

,可以看出,普通的RNN相当于令重置单元

\boldsymbol r_t

的所有维度都为1,从而保留了所有过去的信息;而

\boldsymbol r_t=0

会消除所有过去的信息,使得RNN退化为与过去无关的单个MLP。可以通过这样的对比体会重置单元的意义。

  最后,我们要决定

\boldsymbol h_t

是要更倾向于旧的信息

\boldsymbol h_{t-1}

,还是旧信息与新输入

\boldsymbol x_t

的混合

\hat{\boldsymbol h}_t

。利用更新单元

\boldsymbol z_t

,我们令

\boldsymbol h_t=\boldsymbol z_t\odot\boldsymbol h_{t-1}+(\boldsymbol1-\boldsymbol z_t)\odot\hat{\boldsymbol h}_t

  在上式中,如果更新单元

\boldsymbol z_t

接近

\boldsymbol1

,我们将保留更多的旧信息

\boldsymbol h_{t-1}

,而忽略

\boldsymbol x_t

的影响;反之,如果

\boldsymbol z_t

接近

\boldsymbol0

,我们将让旧信息与新信息混合,保留

\hat{\boldsymbol h}_{t-1}

。需要注意,重置单元和更新单元的作用并不相同,两者不能合为一个单元。简单来说,重置单元控制旧信息保留的比例,而更新单元同时控制旧信息和新输入的比例。虽然理论上我们可以用类似

\boldsymbol h_t=\boldsymbol z_t\odot f_h(\boldsymbol U_h\boldsymbol h_{t-1}+\boldsymbol b_h)+(\boldsymbol1-\boldsymbol z_t)\odot f_x(\boldsymbol W_x\boldsymbol x_t+\boldsymbol b_x)

这样的式子,仅用一个更新单元来计算

\boldsymbol h_t

,但是其灵活性将大打折扣。

  为什么GRU的设计可以缓解梯度爆炸与梯度消失问题呢?上文我们已经提到,导致梯度问题的最大因素是

\begin{aligned}\frac{\partial\boldsymbol h_t}{\partial\boldsymbol h_{t-1}}\end{aligned}

的连乘。在GRU中,我们可以通过调整门控单元

\boldsymbol r_t

\boldsymbol z_t

的值,使该梯度始终保持稳定。以文本分析为例,假如某一事物在一段话的开头和结尾出现,为了让模型保留它们之间的关联,我们只需要将重置单元

\boldsymbol r_t

的值减小、更新单元

\boldsymbol z_t

的值增大,就可以使网络在间隔很多时间步之后,仍然保留最初的记忆信息。最极端的情况下,如果令

\boldsymbol z_2,\cdots,\boldsymbol z_{t-1}=\boldsymbol1

,那么从时刻2到时刻

t-1

的所有输入都将被忽略,可以直接得到

\boldsymbol h_t=\boldsymbol h_1

。这样,梯度的连乘为

\prod_{k=2}^t\frac{\partial\boldsymbol h_k}{\partial\boldsymbol h_{k-1}}=\frac{\partial\boldsymbol h_t}{\partial\boldsymbol h_1}=\boldsymbol I

  虽然门控单元的值也是由网络训练得到的,但是门控单元的引入使得GRU可以自我调节梯度。也就是说,如果

\boldsymbol h_1

非常重要,那么门控单元会让

\boldsymbol h_1

保留下来,其梯度较大;如果

\boldsymbol h_1

重要性不高,随着时间推移被遗忘,那么其梯度即使消失也不会产生什么问题。因此,GRU几乎不会发生普通RNN的梯度爆炸或梯度消失现象。

三、动手实现GRU

  本节我们使用PyTorch库中的工具来实现GRU模型,完成简单的时间序列预测任务。时间序列预测任务是指根据一段连续时间内采集的数据、分析其变化规律、预测接下来数据走向的任务。如果当前数据与历史数据存在依赖关系,或者有随时间有一定的规律性,该任务就很适合用RNN求解。本节中,我们生成了一条经过一定处理的正弦曲线作为数据集,存储在sindata_1000.csv中。该曲线包含1000个数据点。其中前800个点作为训练集,后200个点作为测试集。由于本任务是时序预测任务,我们在划分训练集和测试集时无须将其打乱。我们首先导入必要的库和数据集,并将数据集的图像绘制出来。

代码语言:javascript
代码运行次数:0
运行
复制
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
import torch
import torch.nn as nn

# 导入数据集
data = np.loadtxt('sindata_1000.csv', delimiter=',')
num_data = len(data)
split = int(0.8 * num_data)
print(f'数据集大小:{num_data}')
# 数据集可视化
plt.figure()
plt.scatter(np.arange(split), data[:split], color='blue', s=10, label='training set')
plt.scatter(np.arange(split, num_data), data[split:], color='none', edgecolor='orange', s=10, label='test set')
plt.xlabel('X axis')
plt.ylabel('Y axis')
plt.legend()
plt.show()
# 分割数据集
train_data = np.array(data[:split])
test_data = np.array(data[split:])

  在训练RNN模型时,虽然我们可以把每个时间步

t

单独输入,得到模型的预测值

\hat y_t

,但是这样无法体现出数据的序列相关性质。因此,我们通常会把一段时间序列

\boldsymbol x_t,\cdots,\boldsymbol x_{t+k}

整体作为输入,PyTorch中的GRU模块输出这段序列对应的中间变量

\boldsymbol h_t,\cdots,\boldsymbol h_{t+k}

。下面的实现中,我们每次输入

\boldsymbol x_t,\cdots,\boldsymbol x_{t+k}

的时间序列,预测输入向后错一步

\boldsymbol x_{t+1},\cdots,\boldsymbol x_{t+k+1}

的数据。参照图4的结构可以发现,GRU模型只输出中间变量。如果要得到我们最后的输出,还需要将这些中间变量经过自定义的其他网络。这一点和CNN里卷积层负责提取特征、MLP负责根据特征完成特定任务的做法非常相似。因此,我们在GRU之后拼接一个全连接层,通过中间变量序列

\boldsymbol h_{t+1},\cdots,\boldsymbol h_{t+k+1}

来预测未来的数据分布。

代码语言:javascript
代码运行次数:0
运行
复制
# 输入序列长度
seq_len = 20
# 处理训练数据,把切分序列后多余的部分去掉
train_num = len(train_data) // (seq_len + 1) * (seq_len + 1)
train_data = np.array(train_data[:train_num]).reshape(-1, seq_len + 1, 1)
np.random.seed(0)
torch.manual_seed(0)

x_train = train_data[:, :seq_len] # 形状为(num_data, seq_len, input_size)
y_train = train_data[:, 1: seq_len + 1]
print(f'训练序列数:{len(x_train)}')

# 转为PyTorch张量
x_train = torch.from_numpy(x_train).to(torch.float32)
y_train = torch.from_numpy(y_train).to(torch.float32)
x_test = torch.from_numpy(test_data[:-1]).to(torch.float32)
y_test = torch.from_numpy(test_data[1:]).to(torch.float32)
在这里插入图片描述
在这里插入图片描述

  考虑到GRU的模型结构较为复杂,我们直接使用在PyTorch库中封装好的GRU模型。我们只需要为该模型提供两个参数,第一个参数input_size表示输入

\boldsymbol x

的维度,第二个参数hidden_size表示中间向量

\boldsymbol h

的维度,其余参数我们保持默认值。在前向传播时,GRU接受序列

\boldsymbol x

和初始的中间变量

\boldsymbol h

。如果最开始我们不知道中间变量的值,GRU会自动将其初始化为全零。前向传播的输出是outhidden,前者是整个时间序列上中间变量的值,而后者只包含是最后一步。out[-1]hidden在GRU内部的层数不同时会有区别,但本节只使用单层网络,因此不详细展开。感兴趣的可以参考PyTorch的官方文档。我们将out作为最后全连接层的输入,得到预测值,再把预测值和hidden返回。hidden将作为下一次前向传播的初始中间变量。

代码语言:javascript
代码运行次数:0
运行
复制
class GRU(nn.Module):
    # 包含PyTorch的GRU和拼接的MLP
    def __init__(self, input_size, output_size, hidden_size):
        super().__init__()
        # GRU模块
        self.gru = nn.GRU(input_size=input_size, hidden_size=hidden_size) 
        # 将中间变量映射到预测输出的MLP
        self.linear = nn.Linear(hidden_size, output_size)
        
    def forward(self, x, hidden):
        # 前向传播
        # x的维度为(batch_size, seq_len, input_size)
        # GRU模块接受的输入为(seq_len, batch_size, input_size)
        # 因此需要对x进行变换
        # transpose函数可以交换x的坐标轴
        # out的维度是(seq_len, batch_size, hidden_size)
        out, hidden = self.gru(torch.transpose(x, 0, 1), hidden) 
        # 取序列最后的中间变量输入给全连接层
        out = self.linear(out.view(-1, hidden_size))
        return out, hidden

  接下来,我们设置超参数并实例化GRU。在训练之前,我们还要强调时序模型在测试时与普通模型的区别。GRU在测试时,我们将输入的时间序列长度降为1,即只输入

\boldsymbol x_t

,让GRU预测

t+1

时刻的值。之后,不像普通的任务那样把所有测试数据都给模型,而是让GRU将自己预测的

\hat{\boldsymbol x}_{t+1}

作为输入,再预测

t+2

时刻的值,循环往复。这样的测试方式对模型在时序上的建模能力有相当高的要求,否则就会很快因为预测值的误差累积,和真实值偏差很大。

代码语言:javascript
代码运行次数:0
运行
复制
# 超参数
input_size = 1 # 输入维度
output_size = 1 # 输出维度
hidden_size = 16 # 中间变量维度
learning_rate = 5e-4

# 初始化网络
gru = GRU(input_size, output_size, hidden_size)
gru_optim = torch.optim.Adam(gru.parameters(), lr=learning_rate)

# GRU测试函数,x和hidden分别是初始的输入和中间变量
def test_gru(gru, x, hidden, pred_steps):
    pred = []
    inp = x.view(-1, input_size)
    for i in range(pred_steps):
        gru_pred, hidden = gru(inp, hidden)
        pred.append(gru_pred.detach())
        inp = gru_pred
    return torch.concat(pred).reshape(-1)

  作为对比,我们用相同的数据同步训练一个3层的MLP模型。该MLP将同样将

\boldsymbol x_t,\cdots,\boldsymbol x_{t+k}

的数据拼接在一起作为输入,此时

k

被理解为输入的批量大小,并输出

\boldsymbol x_{t+1},\cdots,\boldsymbol x_{t+k+1}

的预测值,与GRU保持一致。在测试时,MLP同样只接受测试集第一个时间步的数据,以和GRU相同的方式进行自循环预测。

代码语言:javascript
代码运行次数:0
运行
复制
# MLP的超参数
hidden_1 = 32
hidden_2 = 16
mlp = nn.Sequential(
    nn.Linear(input_size, hidden_1),
    nn.ReLU(),
    nn.Linear(hidden_1, hidden_2),
    nn.ReLU(),
    nn.Linear(hidden_2, output_size)
)
mlp_optim = torch.optim.Adam(mlp.parameters(), lr=learning_rate)

# MLP测试函数,相比于GRU少了中间变量
def test_mlp(mlp, x, pred_steps):
    pred = []
    inp = x.view(-1, input_size)
    for i in range(pred_steps):
        mlp_pred = mlp(inp)
        pred.append(mlp_pred.detach())
        inp = mlp_pred
    return torch.concat(pred).reshape(-1)

  我们用完全相同的数据训练GRU和MLP。由于已经有了序列长度,我们不再设置SGD的批量大小,直接将每个训练样本单独输入模型进行优化。

代码语言:javascript
代码运行次数:0
运行
复制
max_epoch = 150
criterion = nn.functional.mse_loss
hidden = None # GRU的中间变量

# 训练损失
gru_losses = []
mlp_losses = []
gru_test_losses = []
mlp_test_losses = []
# 开始训练
with tqdm(range(max_epoch)) as pbar:
    for epoch in pbar:
        st = 0
        gru_loss = 0.0
        mlp_loss = 0.0
        # 随机梯度下降
        for X, y in zip(x_train, y_train):
            # 更新GRU模型
            # 我们不需要通过梯度回传更新中间变量
            # 因此将其从有梯度的部分分离出来
            if hidden is not None:
                hidden.detach_()
            gru_pred, hidden = gru(X[None, ...], hidden)
            gru_train_loss = criterion(gru_pred.view(y.shape), y)
            gru_optim.zero_grad()
            gru_train_loss.backward()
            gru_optim.step()
            gru_loss += gru_train_loss.item()
            # 更新MLP模型
            # 需要对输入的维度进行调整,变成(seq_len, input_size)的形式
            mlp_pred = mlp(X.view(-1, input_size))
            mlp_train_loss = criterion(mlp_pred.view(y.shape), y)
            mlp_optim.zero_grad()
            mlp_train_loss.backward()
            mlp_optim.step()
            mlp_loss += mlp_train_loss.item()
        
        gru_loss /= len(x_train)
        mlp_loss /= len(x_train)
        gru_losses.append(gru_loss)
        mlp_losses.append(mlp_loss)
        
        # 训练和测试时的中间变量序列长度不同,训练时为seq_len,测试时为1
        gru_pred = test_gru(gru, x_test[0], hidden[:, -1], len(y_test))
        mlp_pred = test_mlp(mlp, x_test[0], len(y_test))
        gru_test_loss = criterion(gru_pred, y_test).item()
        mlp_test_loss = criterion(mlp_pred, y_test).item()
        gru_test_losses.append(gru_test_loss)
        mlp_test_losses.append(mlp_test_loss)
        
        pbar.set_postfix({
            'Epoch': epoch,
            'GRU loss': f'{gru_loss:.4f}',
            'MLP loss': f'{mlp_loss:.4f}',
            'GRU test loss': f'{gru_test_loss:.4f}',
            'MLP test loss': f'{mlp_test_loss:.4f}'
        })

  最后,我们在测试集上对比GRU和MLP模型的效果并绘制出来。图中包含了原始数据的训练集和测试集的曲线,可以看出,GRU的预测基本符合测试集的变化规律,而MLP很快就因为缺乏足够的时序信息与测试集偏离。

代码语言:javascript
代码运行次数:0
运行
复制
# 最终测试结果
gru_preds = test_gru(gru, x_test[0], hidden[:, -1], len(y_test)).numpy()
mlp_preds = test_mlp(mlp, x_test[0], len(y_test)).numpy()

plt.figure(figsize=(13, 5))

# 绘制训练曲线
plt.subplot(121)
x_plot = np.arange(len(gru_losses)) + 1
plt.plot(x_plot, gru_losses, color='blue', label='GRU training loss')
plt.plot(x_plot, mlp_losses, color='red', ls='-.', label='MLP training loss')
plt.plot(x_plot, gru_test_losses, color='blue', ls='--', label='GRU test loss')
plt.plot(x_plot, mlp_test_losses, color='red', ls=':', label='MLP test loss')
plt.xlabel('Training step')
plt.ylabel('Loss')
plt.legend(loc='lower left')

# 绘制真实数据与模型预测值的图像
plt.subplot(122)
plt.scatter(np.arange(split), data[:split], color='blue', s=10, label='training set')
plt.scatter(np.arange(split, num_data), data[split:], color='none', edgecolor='orange', s=10, label='test set')
plt.scatter(np.arange(split, num_data - 1), mlp_preds, color='violet', marker='x', alpha=0.4, s=20, label='MLP preds')
plt.scatter(np.arange(split, num_data - 1), gru_preds, color='green', marker='*', alpha=0.4, s=20, label='GRU preds')
plt.legend(loc='lower left')
plt.savefig('output_20_0.png')
plt.savefig('output_20_0.pdf')
plt.show()

:以上文中的数据集及相关资源下载地址: 链接:https://pan.quark.cn/s/b485bdc0e8eb 提取码:NAn2

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-12-04,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、循环神经网络的基本原理
  • 二、门控循环单元
  • 三、动手实现GRU
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档