前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >【机器学习基础】Scikit-learn主要用法

【机器学习基础】Scikit-learn主要用法

作者头像
Francek Chen
发布2025-01-22 23:46:58
发布2025-01-22 23:46:58
28500
代码可运行
举报
运行总次数:0
代码可运行

机器学习是一门人工智能的分支学科,通过算法和模型让计算机从数据中学习,进行模型训练和优化,做出预测、分类和决策支持。Python成为机器学习的首选语言,依赖于强大的开源库如Scikit-learn、TensorFlow和PyTorch。本专栏介绍机器学习的相关算法以及基于Python的算法实现。

【GitCode】专栏资源保存在我的GitCode仓库:https://gitcode.com/Morse_Chen/Python_machine_learning


一、Scikit-learn概述

Scikit-learn是基于NumPy、SciPy和Matplotlib的开源Python机器学习包,它封装了一系列数据预处理、机器学习算法、模型选择等工具,是数据分析师首选的机器学习工具包。

  自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了,scikit-learn简称sklearn,支持包括分类,回归,降维和聚类四大机器学习算法。还包括了特征提取,数据处理和模型评估三大模块。

二、Scikit-learn主要用法

符号标记

符号

意义

符号

意义

X_train

训练数据

y_train

训练集标签

X_test

测试数据

y_test

测试集标签

X

完整数据

y

数据标签

(一)基本建模流程

总体处理流程可以分为:加载数据集、数据预处理、数据集划分、模型估计器创建、模型拟合、模型性能评估

(二)加载数据集

1. 导入工具包

代码语言:javascript
代码运行次数:0
运行
复制
from sklearn import datasets, preprocessing
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score

2. 加载数据

  Scikit-learn支持以NumPy的arrays对象、Pandas对象、SciPy的稀疏矩阵及其他可转换为数值型arrays的数据结构作为其输入,前提是数据必须是数值型的。

sklearn.datasets模块提供了一系列加载和获取著名数据集如鸢尾花、波士顿房价、Olivetti人脸、MNIST数据集等的工具,也包括了一些toy data如S型数据等的生成工具。

代码语言:javascript
代码运行次数:0
运行
复制
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data
y = iris.target
(三)划分数据集
代码语言:javascript
代码运行次数:0
运行
复制
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=12, stratify=y, test_size=0.3)

将完整数据集的70%作为训练集,30%作为测试集,并使得测试集和训练集中各类别数据的比例与原始数据集比例一致(stratify分层策略),另外可通过设置shuffle=True提前打乱数据。

(四)数据预处理

1. 数据变换

使⽤Scikit-learn进行数据标准化:

代码语言:javascript
代码运行次数:0
运行
复制
# 导入数据标准化工具包
from sklearn.preprocessing import StandardScaler
# 构建转换器实例
scaler = StandardScaler()
# 拟合及转换
scaler.fit_transform(X_train)

Z-Score标准化:

x^*=\frac{x-\mu}{\sigma} \\[2ex] \sigma^2=\frac{1}{m}\sum_{i=1}^m(x^{(i)}-\mu)^2,\mu=\frac{1}{m}\sum_{i=1}^mx^{(i)}

处理后的数据均值为0,方差为1。

使用Scikit-learn进行数据变换:

  • 最小最大标准化:MinMaxScaler 归一化(最大 - 最小规范化):
x^*=\frac{x-x_{\min}}{x_{\max}-x_{\min}}

将数据映射到

[0,1]

区间

  • One-Hot编码:OneHotEncoder
  • 归一化:Normalizer
  • 二值化(单个特征转换):Binarizer
  • 标签编码:LabelEncoder
  • 缺失值填补:Imputer
  • 多项式特征生成:PolynomialFeatures

2. 特征选择

代码语言:javascript
代码运行次数:0
运行
复制
from sklearn import feature_selection as fs

过滤式(Filter),保留得分排名前k的特征(top k方式)。

代码语言:javascript
代码运行次数:0
运行
复制
fs.SelectKBest(score_func, k)

封装式(Wrap- per),结合交叉验证的递归特征消除法,自动选择最优特征个数。

代码语言:javascript
代码运行次数:0
运行
复制
fs.RFECV(estimator, scoring=“r2”)

嵌入式(Embedded),从模型中自动选择特征,任何具有coef_或者feature_importances_的基模型都可以作为estimator参数传入。

代码语言:javascript
代码运行次数:0
运行
复制
fs.SelectFromModel(estimator)
(五)构建并拟合模型

1. 监督学习算法——回归

代码语言:javascript
代码运行次数:0
运行
复制
from sklearn.linear_model import LinearRegression
# 构建模型实例
lr = LinearRegression(normalize=True)
# 训练模型
lr.fit(X_train, y_train)
# 作出预测
y_pred = lr.predict(X_test)
  • LASSO:linear_model.Lasso
  • Ridge:linear_model.Ridge
  • ElasticNet:linear_model.ElasticNet
  • 回归树:tree.DecisionTreeRegressor

2. 监督学习算法——分类

代码语言:javascript
代码运行次数:0
运行
复制
from sklearn.tree import DecisionTreeClassifier
# 构建模型实例
clf = DecisionTreeClassifier(max_depth=5)
# 训练模型
clf.fit(X_train, y_train)
# 作出预测
y_pred = clf.predict(X_test)
y_prob = clf.predict_proba(X_test)

使用决策树分类算法解决二分类问题,y_prob为每个样本预测为“0”和“1”类的概率。

  • 逻辑回归:linear_model.LogisticRegression
  • 支持向量机:svm.SVC
  • 朴素贝叶斯:naive_bayes.GaussianNB
  • K近邻:neighbors.NearestNeighbors

3. 监督学习算法——集成学习

sklearn.ensemble模块包含了一系列基于集成思想的分类、回归和离群值检测方法。

代码语言:javascript
代码运行次数:0
运行
复制
from sklearn.ensemble import RandomForestClassifier
# 构建模型实例
clf = RandomForestClassifier(n_estimators=20)
# 训练模型
clf.fit(X_train, y_train)
# 作出预测
y_pred = clf.predict(X_test)
y_prob = clf.predict_proba(X_test)
  • AdaBoost(适应提升算法): ensemble.AdaBoostClassifier ensemble.AdaBoostRegressor
  • GBboost(梯度提升算法): ensemble.GradientBoostingClassifier ensemble.GradientBoostingRegressor

4. 无监督学习算法——k-means

sklearn.cluster模块包含了一系列无监督聚类算法。

代码语言:javascript
代码运行次数:0
运行
复制
from sklearn.cluster import KMeans
# 构建模型实例
kmeans = KMeans(n_clusters=3, random_state=0)
# 训练模型
kmeans.fit(X_train)
# 作出预测
kmeans.predict(X_test)
  • DBSCAN:cluster.DBSCAN
  • 层次聚类:cluster.AgglomerativeClustering
  • 谱聚类:cluster.SpectralClustering

5. 无监督学习算法——降维

sklearn.decomposition模块包含了一系列无监督降维算法。

代码语言:javascript
代码运行次数:0
运行
复制
from sklearn.decomposition import PCA
# 导入PCA库,设置主成分数量为3,n_components代表主成分数量
pca = PCA(n_components=3)
# 训练模型
pca.fit(X)
# 投影后各个特征维度的方差比例(这里是三个主成分)
print(pca.explained_variance_ratio_)
# 投影后的特征维度的方差
print(pca.explained_variance_)
(六)评估模型

sklearn.metrics模块包含了一系列用于评价模型的评分函数、损失函数以及成对数据的距离度量函数。

代码语言:javascript
代码运行次数:0
运行
复制
from sklearn.metrics import accuracy_score
accuracy_score(y_true, y_pred)

对于测试集而言,y_test即是y_true,大部分函数都必须包含真实值y_true和预测值y_pred

1. 回归模型评价

  • 平均绝对误差MAE:metrics.mean_absolute_error()
  • 均方误差MSE:metrics.mean_squared_error()
  • 决定系数R²:metrics.r2_score()

2. 分类模型评价

  • 正确率:metrics.accuracy_score()
  • 各类精确率:metrics.precision_score()
  • F1值:metrics.f1_score()
  • 对数损失或交叉熵损失:metrics.log_loss()
  • 混淆矩阵:metrics.confusion_matrix
  • 含多种评价的分类报告:metrics.classification_report
(七)模型优化

1. 交叉验证

代码语言:javascript
代码运行次数:0
运行
复制
from sklearn.model_selection import cross_val_score
clf = DecisionTreeClassifier(max_depth=5)
scores = cross_val_score(clf, X_train, y_train, cv=5, scoring=’f1_weighted’)

使用5折交叉验证对决策树模型进行评估,使用的评分函数为F1值。

sklearn提供了部分带交叉验证功能的模型类如LassoCVLogisticRegressionCV等,这些类包含cv参数。

2. 超参数调优⸺网格搜索

代码语言:javascript
代码运行次数:0
运行
复制
from sklearn.model_selection import GridSearchCV
from sklearn import svm
svc = svm.SVC()
params = {'kernel':['linear','rbf'],'C':[1, 10]}
grid_search = GridSearchCV(svc, params, cv=5)
grid_search.fit(X_train, y_train)
grid_search.best_params_

在参数网格上进行穷举搜索,方法简单但是搜索速度慢(超参数较多时),且不容易找到参数空间中的局部最优。

3. 超参数调优⸺随机搜索

代码语言:javascript
代码运行次数:0
运行
复制
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import randint
svc = svm.SVC()
param_dist = {'kernel':['linear','rbf'], 'C':randint(1, 20)}
random_search = RandomizedSearchCV(svc, param_dist, n_iter=10)
random_search.fit(X_train, y_train)
random_search.best_params_

在参数子空间中进行随机搜索,选取空间中的100个点进行建模(可从scipy.stats常见分布如正态分布norm、均匀分布uniform中随机采样得到),时间耗费较少,更容易找到局部最优。

三、Scikit-learn案例

可参考:Python数据分析实验四:数据分析综合应用开发

应用Scikit-Learn库中的逻辑回归对Scikit-Learn自带的乳腺癌(from sklearn.datasets import load_breast_cancer)数据集进行分类,并分别评估每种算法的分类性能。为了进一步提升算法的分类性能,能否尝试使用网格搜索和交叉验证找出每种算法较优的超参数。

代码语言:javascript
代码运行次数:0
运行
复制
#加载数据集
from sklearn.datasets import load_breast_cancer
cancer=load_breast_cancer()

#对数据集进行预处理,实现数据标准化
from sklearn.preprocessing import StandardScaler
X=StandardScaler().fit_transform(cancer.data)
y=cancer.target

#将数据集划分为训练集和测试集(要求测试集占25%,随机状态random state设置为33)
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25,random_state=33) 

#创建模型估计器estimator
from sklearn.linear_model import LogisticRegression
lgr=LogisticRegression()

#用训练集训练模型估计器estimator
lgr.fit(X_train,y_train)

#用模型估计器对测试集数据做预测
y_pred=lgr.predict(X_test)

#对模型估计器的学习效果进行评价
#最简单的评估方法:就是调用估计器的score(),该方法的两个参数要求是测试集的特征矩阵和标签向量
print("测试集的分类准确率为:",lgr.score(X_test,y_test))
print(" ")
from sklearn import metrics
#对于多分类问题,还可以使用metrics子包中的classification_report
print(metrics.classification_report(y_test,y_pred,target_names=cancer.target_names)) 

#网格搜索与交叉验证相结合的逻辑回归算法分类:
from sklearn.model_selection import GridSearchCV,KFold
params_lgr={'C':[0.01,0.1,1,10,100],'max_iter':[100,200,300],'solver':['liblinear','lbfgs']}
kf=KFold(n_splits=5,shuffle=False)

grid_search_lgr=GridSearchCV(lgr,params_lgr,cv=kf)
grid_search_lgr.fit(X_train,y_train)
grid_search_y_pred=grid_search_lgr.predict(X_test)
print("Accuracy:",grid_search_lgr.score(X_test,y_test))
print("best params:",grid_search_lgr.best_params_)

另外,推荐一个Scikit-learn学习网站:Scikit-learn中文社区

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-08-07,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、Scikit-learn概述
  • 二、Scikit-learn主要用法
    • (一)基本建模流程
    • (二)加载数据集
    • (三)划分数据集
    • (四)数据预处理
    • (五)构建并拟合模型
    • (六)评估模型
    • (七)模型优化
  • 三、Scikit-learn案例
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档