函数说明 | 接口说明 |
---|---|
stack() | 构造空的栈 |
empty() | 检测stack是否为空 |
size() | 返回stack中元素的个数 |
top() | 返回栈顶元素的引用 |
push() | 将元素val压入stack中 |
pop() | 将stack中尾部的元素弹出 |
class MinStack
{
public:
void push(int x)
{
// 只要是压栈,先将元素保存到_elem中
_elem.push(x);
// 如果x小于_min中栈顶的元素,将x再压入_min中
if(_min.empty() || x <= _min.top())
_min.push(x);
}
void pop()
{
// 如果_min栈顶的元素等于出栈的元素,_min顶的元素要移除
if(_min.top() == _elem.top())
_min.pop();
_elem.pop();
}
int top()
{
return _elem.top();
}
int getMin()
{
return _min.top();
}
private:
// 保存栈中的元素
std::stack<int> _elem;
// 保存栈的最小值
std::stack<int> _min;
};
从栈的接口中可以看出,栈实际是一种特殊的vector,因此使用vector完全可以模拟实现stack。具体实现如下:
#include<vector>
namespace xz
{
template<class T>
class stack
{
public:
stack()
{}
void push(const T& x)
{
_c.push_back(x);
}
void pop()
{
_c.pop_back();
}
T& top()
{
return _c.back();
}
const T& top()const
{
return _c.back();
}
size_t size()const
{
return _c.size();
}
bool empty()const
{
return _c.empty();
}
private:
std::vector<T> _c;
};
}
翻译:
函数声明 | 接口说明 |
---|---|
queue() | 构造空的队列 |
empty() | 检测队列是否为空,是返回true,否则返回false |
size() | 返回队列中有效元素的个数 |
front() | 返回队头元素的引用 |
back() | 返回队尾元素的引用 |
push() | 在队尾将元素val入队列 |
pop() | 将队头元素出队列 |
因为queue的接口中存在头删和尾插,因此使用vector来封装效率太低,故可以借助list来模拟实现queue,具体如下:
#include <list>
namespace xz
{
template<class T>
class queue
{
public:
queue()
{}
void push(const T& x)
{
_c.push_back(x);
}
void pop()
{
_c.pop_front();
}
T& back()
{
return _c.back();
}
const T& back()const
{
return _c.back();
}
T& front()
{
return _c.front();
}
const T& front()const
{
return _c.front();
}
size_t size()const
{
return _c.size();
}
bool empty()const
{
return _c.empty();
}
private:
std::list<T> _c;
};
}
翻译:
优先级队列默认使用vector作为其底层存储数据的容器,在vector上又使用了堆算法将vector中元素构造成堆的结构,因此priority_queue就是堆,所有需要用到堆的位置,都可以考虑使用priority_queue。注意:默认情况下priority_queue是大堆。
函数声明 | 接口说明 |
---|---|
priority_queue()/priority_queue(first,last) | 构造一个空的优先级队列 |
empty( ) | 检测优先级队列是否为空,是返回true,否则返回false |
top( ) | 返回优先级队列中最大(最小元素),即堆顶元素 |
push(x) | 在优先级队列中插入元素x |
pop() | 删除优先级队列中最大(最小)元素,即堆顶元素 |
【注意】
#include <vector>
#include <queue>
#include <functional> // greater算法的头文件
void TestPriorityQueue()
{
// 默认情况下,创建的是大堆,其底层按照小于号比较
vector<int> v{3,2,7,6,0,4,1,9,8,5};
priority_queue<int> q1;
for (auto& e : v)
q1.push(e);
cout << q1.top() << endl;
// 如果要创建小堆,将第三个模板参数换成greater比较方式
priority_queue<int, vector<int>, greater<int>> q2(v.begin(),v.end());
cout << q2.top() << endl;
}
class Date
{
public:
Date(int year = 1900, int month = 1, int day = 1)
: _year(year)
, _month(month)
, _day(day)
{}
bool operator<(const Date& d)const
{
return (_year < d._year) ||
(_year == d._year && _month < d._month) ||
(_year == d._year && _month == d._month && _day < d._day);
}
bool operator>(const Date& d)const
{
return (_year > d._year) ||
(_year == d._year && _month > d._month) ||
(_year == d._year && _month == d._month && _day > d._day);
}
friend ostream& operator<<(ostream& _cout, const Date& d)
{
_cout << d._year << "-" << d._month << "-" << d._day;
return _cout;
}
private:
int _year;
int _month;
int _day;
};
void TestPriorityQueue()
{
// 大堆,需要用户在自定义类型中提供<的重载
priority_queue<Date> q1;
q1.push(Date(2018, 10, 29));
q1.push(Date(2018, 10, 28));
q1.push(Date(2018, 10, 30));
cout << q1.top() << endl;
// 如果要创建小堆,需要用户提供>的重载
priority_queue<Date, vector<Date>, greater<Date>> q2;
q2.push(Date(2018, 10, 29));
q2.push(Date(2018, 10, 28));
q2.push(Date(2018, 10, 30));
cout << q2.top() << endl;
}
通过对priority_queue的底层结构就是堆,因此此处只需对对进行通用的封装即可。
适配器是一种设计模式(设计模式是一套被反复使用的、多数人知晓的、经过分类编目的、代码设计经验的总结),该种模式是将一个类的接口转换成客户希望的另外一个接口。
虽然stack和queue中也可以存放元素,但在STL中并没有将其划分在容器的行列,而是将其称为容器适配器,这是因为stack和队列只是对其他容器的接口进行了包装,STL中stack和queue默认使用deque,比如:
deque(双端队列):是一种双开口的"连续"空间的数据结构,双开口的含义是:可以在头尾两端进行插入和删除操作,且时间复杂度为O(1),与vector比较,头插效率高,不需要搬移元素;与list比较,空间利用率比较高。
deque并不是真正连续的空间,而是由一段段连续的小空间拼接而成的,实际deque类似于一个动态的二维数组,其底层结构如下图所示:
双端队列底层是一段假象的连续空间,实际是分段连续的,为了维护其“整体连续”以及随机访问的假象,落在了deque的迭代器身上,因此deque的迭代器设计就比较复杂,如下图所示:
那deque是如何借助其迭代器维护其假想连续的结构呢?
与vector比较,deque的优势是:头部插入和删除时,不需要搬移元素,效率特别高,而且在扩容时,也不需要搬移大量的元素,因此其效率是必vector高的。 与list比较,其底层是连续空间,空间利用率比较高,不需要存储额外字段。 但是,deque有一个致命缺陷:不适合遍历,因为在遍历时,deque的迭代器要频繁的去检测其是否移动到某段小空间的边界,导致效率低下,而序列式场景中,可能需要经常遍历,因此在实际中,需要线性结构时,大多数情况下优先考虑vector和list,deque的应用并不多,而目前能看到的一个应用就是,STL用其作为stack和queue的底层数据结构。
stack是一种后进先出的特殊线性数据结构,因此只要具有push_back()和pop_back()操作的线性结构,都可以作为stack的底层容器,比如vector和list都可以;queue是先进先出的特殊线性数据结构,只要具有push_back和pop_front操作的线性结构,都可以作为queue的底层容器,比如list。但是STL中对stack和queue默认选择deque作为其底层容器,主要是因为:
结合了deque的优点,而完美的避开了其缺陷。