📝前言说明: ●本专栏主要记录本人的基础算法学习以及LeetCode刷题记录,主要跟随B站博主灵茶山的视频进行学习,专栏中的每一篇文章对应B站博主灵茶山的一个视频 ●题目主要为B站视频内涉及的题目以及B站视频中提到的“课后作业”。 ●文章中的理解仅为个人理解。 ●文章中的截图来源于B站博主灵茶山,如有侵权请告知。
思路:不断让节点的next
指向前一个节点,注意:需要一个额外变量来实现保存当前节点的下一个节点(以免丢失)
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def reverseList(self, head: Optional[ListNode]) -> Optional[ListNode]:
pre = None # 前一节点
cur = head # 当前节点
while cur: # 即cur不为空
nxt = cur.next # 记录当前节点的下一节点
cur.next = pre # 让当前节点指向前一节点
pre = cur # 修改完成后,当前节点变成前一节点
cur = nxt # 下一个要操作的节点
return pre # 返回反转后的链表头结点
注意:反转结束后,从原来的链表上看:pre
指向反转这一段的末尾;cur
指向反转这一段后续的下一个节点
按第1题的方法反转后:
要返回正确的答案,只需先让2
指向5
(cur),再让1
指向4
(pre)
特殊情况,如果left==1
,则没有p0,所以可以添加一个哨兵节点,简化边界条件处理
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def reverseBetween(self, head: Optional[ListNode], left: int, right: int) -> Optional[ListNode]:
dummy = ListNode(next=head)
p0 = dummy
for _ in range(left-1):
p0 = p0.next # 共移动left-1次,停在要反转的前一个位置
pre = None
cur = p0.next
for _ in range(right-left+1): # 共需要操作right-left+1个元素
nxt = cur.next
cur.next = pre
pre = cur
cur = nxt
p0.next.next = cur
p0.next = pre
return dummy.next
和第92题类似,关键在于要不断更新哨兵节点的位置,新哨兵节点的位置应该为上一次反转链表后的末尾,即:p0.next
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def reverseKGroup(self, head: Optional[ListNode], k: int) -> Optional[ListNode]:
n = 0
cur = head
while cur: # 统计链表长度
n += 1
cur = cur.next
t = n // k # 需要反转的组数
dummy = ListNode(next = head)
p0 = dummy
for _ in range(t):
pre = None
cur = p0.next
for _ in range(k):
nxt = cur.next
cur.next = pre
pre = cur
cur = nxt
nxt_p0 = p0.next
p0.next.next = cur
p0.next = pre
p0 = nxt_p0
return dummy.next
规定一下交换顺序
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def swapPairs(self, head: Optional[ListNode]) -> Optional[ListNode]:
node0 = dummy = ListNode(next = head)
node1 = head
while node1 and node1.next: # 至少有两个节点
node2 = node1.next
node3 = node2.next
node0.next = node2 # 0 -> 2
node2.next = node1 # 2 -> 1
node1.next = node3 # 1 -> 3
node0 = node1 # 交换完的末尾是下一次的哨兵
node1 = node3
return dummy.next
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def reserve_list(self, head):
pre = None
cur = head
while cur:
nxt = cur.next
cur.next = pre
pre = cur
cur = nxt
return pre
def addTwo(self,l1,l2):
cur = dummy = ListNode()
carry = 0 # 进位
while l1 or l2 or carry: # 因为这里是or,所以循环内部要分别判断
if l1: carry += l1.val # 这里用carry直接作为和,因为后续通过对carry的直接操作可以得到进位
if l2: carry += l2.val
cur.next = ListNode(val = carry % 10)
carry //= 10
cur = cur.next
if l1: l1 = l1.next
if l2: l2 = l2.next
return dummy.next
def addTwoNumbers(self, l1: Optional[ListNode], l2: Optional[ListNode]) -> Optional[ListNode]:
# 反转链表+两数相加
l1 = self.reserve_list(l1)
l2 = self.reserve_list(l2)
l3 = self.addTwo(l1, l2)
return self.reserve_list(l3)
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def doubleIt(self, head: Optional[ListNode]) -> Optional[ListNode]:
# 方法一:看成是两个List相加
# 方法二:考虑到额外的进位,提前增加一个节点;如果有进位,即当前的数字 > 4
if head.val > 4:
head = ListNode(0, head)
cur = head
while cur:
cur.val = cur.val * 2 % 10
if cur.next and cur.next.val > 4:
cur.val += 1
cur = cur.next
return head