前往小程序,Get更优阅读体验!
立即前往
发布
社区首页 >专栏 >【现代深度学习技术】卷积神经网络03:填充和步幅

【现代深度学习技术】卷积神经网络03:填充和步幅

作者头像
Francek Chen
发布2025-03-04 09:20:08
发布2025-03-04 09:20:08
6000
代码可运行
举报
运行总次数:0
代码可运行

在前面的例子中,输入的高度和宽度都为

3

,卷积核的高度和宽度都为

2

,生成的输出表征的维数为

2\times2

。正如我们在图像卷积中所概括的那样,假设输入形状为

n_h\times n_w

,卷积核形状为

k_h\times k_w

,那么输出形状将是

(n_h-k_h+1) \times (n_w-k_w+1)

。因此,卷积的输出形状取决于输入形状和卷积核的形状。

  还有什么因素会影响输出的大小呢?本节我们将介绍填充(padding)和步幅(stride)。假设以下情景:有时,在应用了连续的卷积之后,我们最终得到的输出远小于输入大小。这是由于卷积核的宽度和高度通常大于

1

所导致的。比如,一个

240 \times 240

像素的图像,经过

10

5 \times 5

的卷积后,将减少到

200 \times 200

像素。如此一来,原始图像的边界丢失了许多有用信息。而填充是解决此问题最有效的方法;有时,我们可能希望大幅降低图像的宽度和高度。例如,如果我们发现原始的输入分辨率十分冗余。步幅则可以在这类情况下提供帮助。

一、填充

  如上所述,在应用多层卷积时,我们常常丢失边缘像素。由于我们通常使用小卷积核,因此对于任何单个卷积,我们可能只会丢失几个像素。但随着我们应用许多连续卷积层,累积丢失的像素数就多了。解决这个问题的简单方法即为填充(padding):在输入图像的边界填充元素(通常填充元素是

0

)。例如,在图1中,我们将

3 \times 3

输入填充到

5 \times 5

,那么它的输出就增加为

4 \times 4

。阴影部分是第一个输出元素以及用于输出计算的输入和核张量元素:

0\times0+0\times1+0\times2+0\times3=0

图1 带填充的二维互相关运算

  通常,如果我们添加

p_h

行填充(大约一半在顶部,一半在底部)和

p_w

列填充(左侧大约一半,右侧一半),则输出形状将为

(n_h-k_h+p_h+1)\times(n_w-k_w+p_w+1) \tag{1}

这意味着输出的高度和宽度将分别增加

p_h

p_w

  在许多情况下,我们需要设置

p_h=k_h-1

p_w=k_w-1

,使输入和输出具有相同的高度和宽度。这样可以在构建网络时更容易地预测每个图层的输出形状。假设

k_h

是奇数,我们将在高度的两侧填充

p_h/2

行。如果

k_h

是偶数,则一种可能性是在输入顶部填充

\lceil p_h/2\rceil

行,在底部填充

\lfloor p_h/2\rfloor

行。同理,我们填充宽度的两侧。

  卷积神经网络中卷积核的高度和宽度通常为奇数,例如1、3、5或7。选择奇数的好处是,保持空间维度的同时,我们可以在顶部和底部填充相同数量的行,在左侧和右侧填充相同数量的列。

  此外,使用奇数的核大小和填充大小也提供了书写上的便利。对于任何二维张量X,当满足:卷积核的大小是奇数、所有边的填充行数和列数相同、输出与输入具有相同高度和宽度这3个条件时,则可以得出:输出Y[i, j]是通过以输入X[i, j]为中心,与卷积核进行互相关计算得到的。

  比如,在下面的例子中,我们创建一个高度和宽度为3的二维卷积层,并在所有侧边填充1个像素。给定高度和宽度为8的输入,则输出的高度和宽度也是8。

代码语言:javascript
代码运行次数:0
复制
import torch
from torch import nn

# 为了方便起见,我们定义了一个计算卷积层的函数。
# 此函数初始化卷积层权重,并对输入和输出提高和缩减相应的维数
def comp_conv2d(conv2d, X):
    # 这里的(1,1)表示批量大小和通道数都是1
    X = X.reshape((1, 1) + X.shape)
    Y = conv2d(X)
    # 省略前两个维度:批量大小和通道
    return Y.reshape(Y.shape[2:])

# 请注意,这里每边都填充了1行或1列,因此总共添加了2行或2列
conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1)
X = torch.rand(size=(8, 8))
comp_conv2d(conv2d, X).shape

  当卷积核的高度和宽度不同时,我们可以填充不同的高度和宽度,使输出和输入具有相同的高度和宽度。在如下示例中,我们使用高度为5,宽度为3的卷积核,高度和宽度两边的填充分别为2和1。

代码语言:javascript
代码运行次数:0
复制
conv2d = nn.Conv2d(1, 1, kernel_size=(5, 3), padding=(2, 1))
comp_conv2d(conv2d, X).shape

二、步幅

  在计算互相关时,卷积窗口从输入张量的左上角开始,向下、向右滑动。在前面的例子中,我们默认每次滑动一个元素。但是,有时候为了高效计算或是缩减采样次数,卷积窗口可以跳过中间位置,每次滑动多个元素。

  我们将每次滑动元素的数量称为步幅(stride)。到目前为止,我们只使用过高度或宽度为

1

的步幅,那么如何使用较大的步幅呢?图2是垂直步幅为

3

,水平步幅为

2

的二维互相关运算。着色部分是输出元素以及用于输出计算的输入和内核张量元素:

0\times0+0\times1+1\times2+2\times3=8

0\times0+6\times1+0\times2+0\times3=6

图2 垂直步幅为3,水平步幅为2的二维互相关运算

  可以看到,为了计算输出中第一列的第二个元素和第一行的第二个元素,卷积窗口分别向下滑动三行和向右滑动两列。但是,当卷积窗口继续向右滑动两列时,没有输出,因为输入元素无法填充窗口(除非我们添加另一列填充)。

  通常,当垂直步幅为

s_h

、水平步幅为

s_w

时,输出形状为

\lfloor(n_h-k_h+p_h+s_h)/s_h\rfloor \times \lfloor(n_w-k_w+p_w+s_w)/s_w\rfloor \tag{2}

  如果我们设置了

p_h=k_h-1

p_w=k_w-1

,则输出形状将简化为

\lfloor(n_h+s_h-1)/s_h\rfloor \times \lfloor(n_w+s_w-1)/s_w\rfloor

。更进一步,如果输入的高度和宽度可以被垂直和水平步幅整除,则输出形状将为

(n_h/s_h) \times (n_w/s_w)

  下面,我们将高度和宽度的步幅设置为2,从而将输入的高度和宽度减半。

代码语言:javascript
代码运行次数:0
复制
conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1, stride=2)
comp_conv2d(conv2d, X).shape

  接下来,看一个稍微复杂的例子。

代码语言:javascript
代码运行次数:0
复制
conv2d = nn.Conv2d(1, 1, kernel_size=(3, 5), padding=(0, 1), stride=(3, 4))
comp_conv2d(conv2d, X).shape

  为了简洁起见,当输入高度和宽度两侧的填充数量分别为

p_h

p_w

时,我们称之为填充

(p_h, p_w)

。当

p_h = p_w = p

时,填充是

p

。同理,当高度和宽度上的步幅分别为

s_h

s_w

时,我们称之为步幅

(s_h, s_w)

。特别地,当

s_h = s_w = s

时,我们称步幅为

s

。默认情况下,填充为0,步幅为1。在实践中,我们很少使用不一致的步幅或填充,也就是说,我们通常有

p_h = p_w

s_h = s_w

小结

  • 填充可以增加输出的高度和宽度。这常用来使输出与输入具有相同的高和宽。
  • 步幅可以减小输出的高和宽,例如输出的高和宽仅为输入的高和宽的
1/n

n

是一个大于

1

的整数)。

  • 填充和步幅可用于有效地调整数据的维度。
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2025-03-03,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、填充
  • 二、步幅
  • 小结
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档