前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >聊聊Spring AI的MilvusVectorStore

聊聊Spring AI的MilvusVectorStore

原创
作者头像
code4it
发布于 2025-04-04 04:46:02
发布于 2025-04-04 04:46:02
18700
代码可运行
举报
文章被收录于专栏:码匠的流水账码匠的流水账
运行总次数:0
代码可运行

本文主要研究一下Spring AI的MilvusVectorStore

示例

pom.xml

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
		<dependency>
			<groupId>org.springframework.ai</groupId>
			<artifactId>spring-ai-starter-vector-store-milvus</artifactId>
		</dependency>

配置

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
spring:
  ai:
    vectorstore:
      milvus:
        initialize-schema: true
        databaseName: "default"
        collectionName: "test_collection1"
        embeddingDimension: 1024
        indexType: IVF_FLAT
        metricType: COSINE
        client:
          host: "localhost"
          port: 19530

代码

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
    @Test
    public void testAddAndSearch() {
        List <Document> documents = List.of(
                new Document("Spring AI rocks!! Spring AI rocks!! Spring AI rocks!! Spring AI rocks!! Spring AI rocks!!", Map.of("meta1", "meta1")),
                new Document("The World is Big and Salvation Lurks Around the Corner"),
                new Document("You walk forward facing the past and you turn back toward the future.", Map.of("meta2", "meta2")));

        // Add the documents to Milvus Vector Store
        vectorStore.add(documents);

        // Retrieve documents similar to a query
        List<Document> results = this.vectorStore.similaritySearch(SearchRequest.builder().query("Spring").topK(5).build());
        log.info("results:{}", JSON.toJSONString(results));
    }

输出如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
results:[{"contentFormatter":{"excludedEmbedMetadataKeys":[],"excludedInferenceMetadataKeys":[],"metadataSeparator":"\n","metadataTemplate":"{key}: {value}","textTemplate":"{metadata_string}\n\n{content}"},"formattedContent":"distance: 0.43509113788604736\nmeta1: meta1\n\nSpring AI rocks!! Spring AI rocks!! Spring AI rocks!! Spring AI rocks!! Spring AI rocks!!","id":"d1c92394-77c8-4c67-9817-0980ad31479d","metadata":{"distance":0.43509113788604736,"meta1":"meta1"},"score":0.5649088621139526,"text":"Spring AI rocks!! Spring AI rocks!! Spring AI rocks!! Spring AI rocks!! Spring AI rocks!!"},{"contentFormatter":{"$ref":"$[0].contentFormatter"},"formattedContent":"distance: 0.5709311962127686\n\nThe World is Big and Salvation Lurks Around the Corner","id":"65d7ddb3-a735-4dad-9da0-cbba5665b149","metadata":{"distance":0.5709311962127686},"score":0.42906883358955383,"text":"The World is Big and Salvation Lurks Around the Corner"},{"contentFormatter":{"$ref":"$[0].contentFormatter"},"formattedContent":"distance: 0.5936022996902466\nmeta2: meta2\n\nYou walk forward facing the past and you turn back toward the future.","id":"26050d78-3396-4b61-97ea-111249f6d037","metadata":{"distance":0.5936022996902466,"meta2":"meta2"},"score":0.40639767050743103,"text":"You walk forward facing the past and you turn back toward the future."}]

源码

MilvusVectorStoreAutoConfiguration

org/springframework/ai/vectorstore/milvus/autoconfigure/MilvusVectorStoreAutoConfiguration.java

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
@AutoConfiguration
@ConditionalOnClass({ MilvusVectorStore.class, EmbeddingModel.class })
@EnableConfigurationProperties({ MilvusServiceClientProperties.class, MilvusVectorStoreProperties.class })
@ConditionalOnProperty(name = SpringAIVectorStoreTypes.TYPE, havingValue = SpringAIVectorStoreTypes.MILVUS,
		matchIfMissing = true)
public class MilvusVectorStoreAutoConfiguration {

	@Bean
	@ConditionalOnMissingBean(MilvusServiceClientConnectionDetails.class)
	PropertiesMilvusServiceClientConnectionDetails milvusServiceClientConnectionDetails(
			MilvusServiceClientProperties properties) {
		return new PropertiesMilvusServiceClientConnectionDetails(properties);
	}

	@Bean
	@ConditionalOnMissingBean(BatchingStrategy.class)
	BatchingStrategy milvusBatchingStrategy() {
		return new TokenCountBatchingStrategy();
	}

	@Bean
	@ConditionalOnMissingBean
	public MilvusVectorStore vectorStore(MilvusServiceClient milvusClient, EmbeddingModel embeddingModel,
			MilvusVectorStoreProperties properties, BatchingStrategy batchingStrategy,
			ObjectProvider<ObservationRegistry> observationRegistry,
			ObjectProvider<VectorStoreObservationConvention> customObservationConvention) {

		return MilvusVectorStore.builder(milvusClient, embeddingModel)
			.initializeSchema(properties.isInitializeSchema())
			.databaseName(properties.getDatabaseName())
			.collectionName(properties.getCollectionName())
			.embeddingDimension(properties.getEmbeddingDimension())
			.indexType(IndexType.valueOf(properties.getIndexType().name()))
			.metricType(MetricType.valueOf(properties.getMetricType().name()))
			.indexParameters(properties.getIndexParameters())
			.iDFieldName(properties.getIdFieldName())
			.autoId(properties.isAutoId())
			.contentFieldName(properties.getContentFieldName())
			.metadataFieldName(properties.getMetadataFieldName())
			.embeddingFieldName(properties.getEmbeddingFieldName())
			.batchingStrategy(batchingStrategy)
			.observationRegistry(observationRegistry.getIfUnique(() -> ObservationRegistry.NOOP))
			.customObservationConvention(customObservationConvention.getIfAvailable(() -> null))
			.build();
	}

	@Bean
	@ConditionalOnMissingBean
	public MilvusServiceClient milvusClient(MilvusVectorStoreProperties serverProperties,
			MilvusServiceClientProperties clientProperties, MilvusServiceClientConnectionDetails connectionDetails) {

		var builder = ConnectParam.newBuilder()
			.withHost(connectionDetails.getHost())
			.withPort(connectionDetails.getPort())
			.withDatabaseName(serverProperties.getDatabaseName())
			.withConnectTimeout(clientProperties.getConnectTimeoutMs(), TimeUnit.MILLISECONDS)
			.withKeepAliveTime(clientProperties.getKeepAliveTimeMs(), TimeUnit.MILLISECONDS)
			.withKeepAliveTimeout(clientProperties.getKeepAliveTimeoutMs(), TimeUnit.MILLISECONDS)
			.withRpcDeadline(clientProperties.getRpcDeadlineMs(), TimeUnit.MILLISECONDS)
			.withSecure(clientProperties.isSecure())
			.withIdleTimeout(clientProperties.getIdleTimeoutMs(), TimeUnit.MILLISECONDS)
			.withAuthorization(clientProperties.getUsername(), clientProperties.getPassword());

		if (clientProperties.isSecure() && StringUtils.hasText(clientProperties.getUri())) {
			builder.withUri(clientProperties.getUri());
		}

		if (clientProperties.isSecure() && StringUtils.hasText(clientProperties.getToken())) {
			builder.withToken(clientProperties.getToken());
		}

		if (clientProperties.isSecure() && StringUtils.hasText(clientProperties.getClientKeyPath())) {
			builder.withClientKeyPath(clientProperties.getClientKeyPath());
		}

		if (clientProperties.isSecure() && StringUtils.hasText(clientProperties.getClientPemPath())) {
			builder.withClientPemPath(clientProperties.getClientPemPath());
		}

		if (clientProperties.isSecure() && StringUtils.hasText(clientProperties.getCaPemPath())) {
			builder.withCaPemPath(clientProperties.getCaPemPath());
		}

		if (clientProperties.isSecure() && StringUtils.hasText(clientProperties.getServerPemPath())) {
			builder.withServerPemPath(clientProperties.getServerPemPath());
		}

		if (clientProperties.isSecure() && StringUtils.hasText(clientProperties.getServerName())) {
			builder.withServerName(clientProperties.getServerName());
		}

		return new MilvusServiceClient(builder.build());
	}

	static class PropertiesMilvusServiceClientConnectionDetails implements MilvusServiceClientConnectionDetails {

		private final MilvusServiceClientProperties properties;

		PropertiesMilvusServiceClientConnectionDetails(MilvusServiceClientProperties properties) {
			this.properties = properties;
		}

		@Override
		public String getHost() {
			return this.properties.getHost();
		}

		@Override
		public int getPort() {
			return this.properties.getPort();
		}

	}

}

MilvusVectorStoreAutoConfiguration在spring.ai.vectorstore.typemilvus会启用(matchIfMissing=true),它根据MilvusServiceClientProperties创建PropertiesMilvusServiceClientConnectionDetails,创建TokenCountBatchingStrategy、MilvusServiceClient,最后根据MilvusVectorStoreProperties创建MilvusVectorStore

MilvusServiceClientProperties

org/springframework/ai/vectorstore/milvus/autoconfigure/MilvusServiceClientProperties.java

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
@ConfigurationProperties(MilvusServiceClientProperties.CONFIG_PREFIX)
public class MilvusServiceClientProperties {

	public static final String CONFIG_PREFIX = "spring.ai.vectorstore.milvus.client";

	/**
	 * Secure the authorization for this connection, set to True to enable TLS.
	 */
	protected boolean secure = false;

	/**
	 * Milvus host name/address.
	 */
	private String host = "localhost";

	/**
	 * Milvus the connection port. Value must be greater than zero and less than 65536.
	 */
	private int port = 19530;

	/**
	 * The uri of Milvus instance
	 */
	private String uri;

	/**
	 * Token serving as the key for identification and authentication purposes.
	 */
	private String token;

	/**
	 * Connection timeout value of client channel. The timeout value must be greater than
	 * zero.
	 */
	private long connectTimeoutMs = 10000;

	/**
	 * Keep-alive time value of client channel. The keep-alive value must be greater than
	 * zero.
	 */
	private long keepAliveTimeMs = 55000;

	/**
	 * Enables the keep-alive function for client channel.
	 */
	// private boolean keepAliveWithoutCalls = false;

	/**
	 * The keep-alive timeout value of client channel. The timeout value must be greater
	 * than zero.
	 */
	private long keepAliveTimeoutMs = 20000;

	/**
	 * Deadline for how long you are willing to wait for a reply from the server. With a
	 * deadline setting, the client will wait when encounter fast RPC fail caused by
	 * network fluctuations. The deadline value must be larger than or equal to zero.
	 * Default value is 0, deadline is disabled.
	 */
	private long rpcDeadlineMs = 0; // Disabling deadline

	/**
	 * The client.key path for tls two-way authentication, only takes effect when "secure"
	 * is True.
	 */
	private String clientKeyPath;

	/**
	 * The client.pem path for tls two-way authentication, only takes effect when "secure"
	 * is True.
	 */
	private String clientPemPath;

	/**
	 * The ca.pem path for tls two-way authentication, only takes effect when "secure" is
	 * True.
	 */
	private String caPemPath;

	/**
	 * server.pem path for tls one-way authentication, only takes effect when "secure" is
	 * True.
	 */
	private String serverPemPath;

	/**
	 * Sets the target name override for SSL host name checking, only takes effect when
	 * "secure" is True. Note: this value is passed to grpc.ssl_target_name_override
	 */
	private String serverName;

	/**
	 * Idle timeout value of client channel. The timeout value must be larger than zero.
	 */
	private long idleTimeoutMs = TimeUnit.MILLISECONDS.convert(24, TimeUnit.HOURS);

	/**
	 * The username and password for this connection.
	 */
	private String username = "root";

	/**
	 * The password for this connection.
	 */
	private String password = "milvus";

	//......
}	

MilvusServiceClientProperties提供了spring.ai.vectorstore.milvus.client的配置,可以设置host、port、connectTimeoutMs、username、password等

PropertiesMilvusServiceClientConnectionDetails

org/springframework/ai/vectorstore/milvus/autoconfigure/MilvusVectorStoreAutoConfiguration.java

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
	static class PropertiesMilvusServiceClientConnectionDetails implements MilvusServiceClientConnectionDetails {

		private final MilvusServiceClientProperties properties;

		PropertiesMilvusServiceClientConnectionDetails(MilvusServiceClientProperties properties) {
			this.properties = properties;
		}

		@Override
		public String getHost() {
			return this.properties.getHost();
		}

		@Override
		public int getPort() {
			return this.properties.getPort();
		}

	}

PropertiesMilvusServiceClientConnectionDetails实现了MilvusServiceClientConnectionDetails接口,适配了getHost、getPort方法

MilvusVectorStoreProperties

org/springframework/ai/vectorstore/milvus/autoconfigure/MilvusVectorStoreProperties.java

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
@ConfigurationProperties(MilvusVectorStoreProperties.CONFIG_PREFIX)
public class MilvusVectorStoreProperties extends CommonVectorStoreProperties {

	public static final String CONFIG_PREFIX = "spring.ai.vectorstore.milvus";

	/**
	 * The name of the Milvus database to connect to.
	 */
	private String databaseName = MilvusVectorStore.DEFAULT_DATABASE_NAME;

	/**
	 * Milvus collection name to store the vectors.
	 */
	private String collectionName = MilvusVectorStore.DEFAULT_COLLECTION_NAME;

	/**
	 * The dimension of the vectors to be stored in the Milvus collection.
	 */
	private int embeddingDimension = MilvusVectorStore.OPENAI_EMBEDDING_DIMENSION_SIZE;

	/**
	 * The type of the index to be created for the Milvus collection.
	 */
	private MilvusIndexType indexType = MilvusIndexType.IVF_FLAT;

	/**
	 * The metric type to be used for the Milvus collection.
	 */
	private MilvusMetricType metricType = MilvusMetricType.COSINE;

	/**
	 * The index parameters to be used for the Milvus collection.
	 */
	private String indexParameters = "{\"nlist\":1024}";

	/**
	 * The ID field name for the collection.
	 */
	private String idFieldName = MilvusVectorStore.DOC_ID_FIELD_NAME;

	/**
	 * Boolean flag to indicate if the auto-id is used.
	 */
	private boolean isAutoId = false;

	/**
	 * The content field name for the collection.
	 */
	private String contentFieldName = MilvusVectorStore.CONTENT_FIELD_NAME;

	/**
	 * The metadata field name for the collection.
	 */
	private String metadataFieldName = MilvusVectorStore.METADATA_FIELD_NAME;

	/**
	 * The embedding field name for the collection.
	 */
	private String embeddingFieldName = MilvusVectorStore.EMBEDDING_FIELD_NAME;

	//......

	public enum MilvusMetricType {

		/**
		 * Invalid metric type
		 */
		INVALID,
		/**
		 * Euclidean distance
		 */
		L2,
		/**
		 * Inner product
		 */
		IP,
		/**
		 * Cosine distance
		 */
		COSINE,
		/**
		 * Hamming distance
		 */
		HAMMING,
		/**
		 * Jaccard distance
		 */
		JACCARD

	}

	public enum MilvusIndexType {

		INVALID, FLAT, IVF_FLAT, IVF_SQ8, IVF_PQ, HNSW, DISKANN, AUTOINDEX, SCANN, GPU_IVF_FLAT, GPU_IVF_PQ, BIN_FLAT,
		BIN_IVF_FLAT, TRIE, STL_SORT

	}

}	

MilvusVectorStoreProperties提供了spring.ai.vectorstore.milvus的配置,主要是配置databaseName、collectionName、embeddingDimension(默认1536)、indexType(默认IVF_FLAT)、metricType(默认COSINE)

CommonVectorStoreProperties

org/springframework/ai/vectorstore/properties/CommonVectorStoreProperties.java

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
public class CommonVectorStoreProperties {

	/**
	 * Vector stores do not initialize schema by default on application startup. The
	 * applications explicitly need to opt-in for initializing the schema on startup. The
	 * recommended way to initialize the schema on startup is to set the initialize-schema
	 * property on the vector store. See {@link #setInitializeSchema(boolean)}.
	 */
	private boolean initializeSchema = false;

	public boolean isInitializeSchema() {
		return this.initializeSchema;
	}

	public void setInitializeSchema(boolean initializeSchema) {
		this.initializeSchema = initializeSchema;
	}

}

CommonVectorStoreProperties定义了initializeSchema属性,代表说是否需要在启动的时候初始化schema

小结

Spring AI提供了spring-ai-starter-vector-store-milvus用于自动装配MilvusVectorStore。要注意的是embeddingDimension默认是1536,如果出现io.milvus.exception.ParamException: Incorrect dimension for field 'embedding': the no.0 vector's dimension: 1024 is not equal to field's dimension: 1536,那么需要重建schema,把embeddingDimension设置为1024。

doc

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
软件测试/人工智能|如何使用ChatGPT编写符合PO模式的数据驱动测试框架
上一篇文章我们介绍了使用ChatGPT帮我们编写自动化测试脚本,但是上文编写的脚本并不符合我们的PO设计模式,作为现在主流的设计模式,更加方便我们去编写脚本,一旦页面发生变动,我们的代码改动也会变小,所以我们的目标不是使用ChatGPT编写自动化脚本,而是要使用ChatGPT来编写符合PO设计模式的自动化脚本,而且PO设计模式又经常会结合数据驱动,所以本文就来给大家介绍一下使用ChatGPT来生成符合PO模式的数据驱动测试。
霍格沃兹测试开发Muller老师
2023/11/23
3760
提高测试效率与代码质量Selenium与PyTest的完美结合
在软件开发中,自动化测试是确保应用程序质量和稳定性的关键步骤之一。Selenium是一个流行的自动化测试工具,而PyTest则是Python社区中广泛使用的测试框架之一。本文将介绍如何结合Selenium和PyTest来进行自动化测试,以提高测试效率和代码质量。
一键难忘
2024/05/11
4560
软件测试/人工智能|如何使用ChatGPT帮我们写自动化测试脚本
当今软件开发中,自动化测试脚本的编写是确保软件质量和稳定性的重要步骤。随着人工智能和自然语言处理技术的进步,像ChatGPT这样的语言模型已经成为编写自动化测试脚本的有力工具。ChatGPT可以根据给定的指令和条件生成代码,简化了测试流程并提高了效率。
霍格沃兹测试开发Muller老师
2023/11/23
4890
使用“数据驱动测试”之前应该知道的
顾翔老师开发的bugreport2script开源了,希望大家多提建议。文件在https://github.com/xianggu625/bug2testscript,
顾翔
2019/12/11
6800
使用“数据驱动测试”之前应该知道的
Python Selenium全栈指南:从自动化入门到企业级实战
这篇文章全面解析了Python Selenium库的核心技术与应用实践,从环境配置、元素定位(涵盖ID、CSS、XPath等八种方法)、表单操作及文件上传等基础操作入手,逐步深入至显式等待策略、Page Object设计模式、数据驱动测试等高级应用,并探讨了企业级场景下的分布式测试集群搭建、云平台集成及验证码处理方案。通过性能优化技巧(如无头模式、网络监控)和移动端与AI结合的扩展生态,展示了Selenium的多样化潜力,同时总结了十大最佳实践与常见问题解决方案,为读者提供了从入门到精通的系统化学习路径和进阶资源,助力实现高效、稳定的Web自动化测试与开发。
Lethehong
2025/03/01
5440
Python Selenium全栈指南:从自动化入门到企业级实战
面试被问selenium自动化模型,你了解多少?
自动化测试模型可以看作自动化框架与工具设计得思想。自动化不仅仅式单纯的写写脚本运行就可以了,还需要考虑如何使脚本运行效率提高,代码复用、参数化等问题。自动化模型主要分为四大类:线性模型,模块化驱动,驱动数据,关键字驱动。
全栈程序员站长
2022/06/29
4940
面试被问selenium自动化模型,你了解多少?
软件测试|web自动化测试神器playwright教程(十)
PO设计模式是我们在进行web自动化测试中经常使用到的思想和原则,甚至已经成为了web自动化测试的标准模型,PO设计模式在selenium官方文档中是被推荐的原则,同样的,playwright也是完全支持我们按照PO模式的思想来写我们的测试用例。
霍格沃兹测试开发Muller老师
2023/03/30
1K0
【实测】用chatGPT来完整的走一次测试流程吧,看看它到底相当于我们什么等级的工程师?
chatgpt我不多做介绍了,连我乡下的舅妈都知晓的东西。都说这玩意挺神的,那今天我就亲自来测试一下用gpt来做一次完整的测试流程吧?
我去热饭
2023/08/14
4730
【实测】用chatGPT来完整的走一次测试流程吧,看看它到底相当于我们什么等级的工程师?
PO模式实践「建议收藏」
对象库层:LoginPage 操作层:LoginHandle 业务层:LoginProxy
全栈程序员站长
2022/07/01
4950
PageObject(PO)设计模式在 UI 自动化中的实践总结(以 QQ 邮箱登陆为例)
https://martinfowler.com/bliki/PageObject.html
霍格沃兹测试开发
2020/11/17
1.2K0
WebUI 自动化测试的经典设计模式:PO
先来看下未使用 PO(PageObject) 设计模式下的代码,以网页版百度登录为例来说明。
Wu_Candy
2022/07/04
1.1K0
ChatGPT与基于GUI的自动化测试
当使用Edge浏览器结合Selenium框架生成百度查询测试代码时,你可以使用以下Python代码示例:
顾翔
2024/09/10
2500
ChatGPT与基于GUI的自动化测试
Selenium4+Python3系列(十二) - 测试框架的设计与开发
整个框架的实现,大约也就1.5天,关于框架的开发并不是很难,主要难在测试报告增加失败自动截图功能和echart的饼子图统计功能,两者的整合花了近半天的时间吧。
软件测试君
2023/02/24
6391
Selenium4+Python3系列(十二) - 测试框架的设计与开发
python自动化测试一文详解
Python 作为一种高效、易读的编程语言,凭借其丰富的库和框架,成为自动化测试领域的热门选择。无论是Web应用、API,还是移动应用,Python 都能提供强大的支持,使得测试人员能够快速编写和维护测试用例。
fanstuck
2024/10/29
8210
python自动化测试一文详解
Selenium4+Python3系列(十) - Page Object设计模式
Page Object(PO)模式,是Selenium实战中最为流行,并且被自动化测试同学所熟悉和推崇的一种设计模式之一。在设计测试时,把页面元素定位和元素操作方法按照页面抽象出来,分离成一定的对象,然后再进行组织。
软件测试君
2022/12/05
4920
Selenium4+Python3系列(十) -  Page Object设计模式
Selenium 自动化综合实践
无头浏览器即headless browser,是一种没有界面的浏览器。既然是浏览器那么浏览器该有的东西它都应该有,只是看不到界面而已。
清风穆云
2021/08/09
3980
Java自动化测试(web自动化测试框架 28)
http://120.78.128.25:8765/Admin/Index/login.html
zx钟
2020/09/14
2.5K0
Selenium的PO模式(Page Object Model)[python版]
首先,我们要分离测试对象(元素对象)和测试脚本(用例脚本),那么我们分别创建两个脚本文件, LoginPage.py 用于定义页面元素对象,每一个元素都封装成组件(可以看做存放页面元素对象的仓库)  CaseLoginTest.py 测试用例脚本。我们的实现思想,一切元素和元素的操作组件化定义在Page页面,用例脚本页面,通过调用Page中的组件对象,进行拼凑成一个登录脚本。
流柯
2018/08/31
1.6K0
Selenium入门
查看chrom浏览器的版本,需要下载其对应版本的chrome webdriver.
测试加
2022/03/24
2.8K0
Selenium入门
Pytest实战Web测试框架
用例之间不应相互依赖,如果部分用例拥有相同的业务流程,如都需要,打开登录页->登录->点击添加商品菜单->进入添加商品页面 不建议使用以下方式,并使其按顺序执行。
赵云龙龙
2020/02/13
1.9K0
Pytest实战Web测试框架
推荐阅读
相关推荐
软件测试/人工智能|如何使用ChatGPT编写符合PO模式的数据驱动测试框架
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验