RAG(Retrieval Augmented Generation,检索增强生成)是一种结合信息检索和文本生成的技术方案
RAG 技术就像给 AI 装上了「实时百科大脑」,通过先查资料后回答的机制,让 AI 摆脱传统模型的”知识遗忘”困境
主要核心流程分为:
1、知识更新滞后
LLM 是离线训练的,一旦训练完成后,它们无法获取新的信息,因此,它们无法回答训练数据时间点之后发生的事件,比如“今天的最新新闻”
2、幻觉现象
大语言模型(LLM) 的回答是根据已有的 训练数据 和概率预测得出来的,当面对没有在训练中见过的问题时,模型可能会“编造”看似合理但实际上不准确或虚构的内容
RAG 将信息检索与语言生成相结合,在回答问题时,首先从外部知识库(如网页、数据库、文档等)中检索相关信息,再基于这些信息生成回答。这样一来:
在 RAG 中,文档索引 是整个流程的基础环节之一,将文档(word,excel,PDF,Markdown 等)根据一定的规则容划分为文本块(chunk),然后通过 Embedding 模型将文本块转换为向量并存入向量数据库中
文档索引的目的是为了实现高效、准确的信息检索,为后续的大语言模型生成提供可靠的上下文支持。
Embedding 是一种将文字序列(如词、句子或文档)转换为向量表示(固定维度的向量)的技术
模型目标:使得具有相似语义的文字序列对应的向量尽可能接近(即相似度高),而语义不同的文字序列对应的向量尽可能远离(即相似度低)
作用:通过数学计算向量之间的距离,快速检索出相似度最高的文字序列
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有