
深度学习 (DL, Deep Learning) 特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据分析、科学探索等领域都取得了很多成果。本专栏介绍基于PyTorch的深度学习算法实现。 【GitCode】专栏资源保存在我的GitCode仓库:https://gitcode.com/Morse_Chen/PyTorch_deep_learning。
上节介绍了框架下的注意力机制的主要成分:查询(自主提示)和键(非自主提示)之间的交互形成了注意力汇聚;注意力汇聚有选择地聚合了值(感官输入)以生成最终的输出。本节将介绍注意力汇聚的更多细节,以便从宏观上了解注意力机制在实践中的运作方式。具体来说,1964年提出的Nadaraya-Watson核回归模型是一个简单但完整的例子,可以用于演示具有注意力机制的机器学习。
import torch
from torch import nn
from d2l import torch as d2l简单起见,考虑下面这个回归问题:给定的成对的“输入-输出”数据集
,如何学习
来预测任意新输入
的输出
?
根据下面的非线性函数生成一个人工数据集,其中加入的噪声项为
:
其中,
服从均值为
和标准差为
的正态分布。在这里生成了
个训练样本和
个测试样本。为了更好地可视化之后的注意力模式,需要将训练样本进行排序。
n_train = 50 # 训练样本数
x_train, _ = torch.sort(torch.rand(n_train) * 5) # 排序后的训练样本def f(x):
return 2 * torch.sin(x) + x**0.8
y_train = f(x_train) + torch.normal(0.0, 0.5, (n_train,)) # 训练样本的输出
x_test = torch.arange(0, 5, 0.1) # 测试样本
y_truth = f(x_test) # 测试样本的真实输出
n_test = len(x_test) # 测试样本数
n_test
下面的函数将绘制所有的训练样本(样本由圆圈表示),不带噪声项的真实数据生成函数
(标记为'Truth'),以及学习得到的预测函数(标记为'Pred')。
def plot_kernel_reg(y_hat):
d2l.plot(x_test, [y_truth, y_hat], 'x', 'y', legend=['Truth', 'Pred'], xlim=[0, 5], ylim=[-1, 5])
d2l.plt.plot(x_train, y_train, 'o', alpha=0.5);先使用最简单的估计器来解决回归问题。基于平均汇聚来计算所有训练样本输出值的平均值:
如下图所示,这个估计器确实不够聪明。真实函数
(Truth)和预测函数(Pred)相差很大。
y_hat = torch.repeat_interleave(y_train.mean(), n_test)
plot_kernel_reg(y_hat)
显然,平均汇聚忽略了输入
。于是Nadaraya和Watson提出了一个更好的想法,根据输入的位置对输出
进行加权:
其中
是核(kernel)。公式(3)所描述的估计器被称为Nadaraya-Watson核回归(Nadaraya-Watson kernel regression)。这里不会深入讨论核函数的细节,但受此启发,我们可以从注意力提示图3中的注意力机制框架的角度重写公式(3),成为一个更加通用的注意力汇聚(attention pooling)公式:
其中,
是查询,
是键值对。比较公式(2)和公式(4),公式(4)中的注意力汇聚是
的加权平均。将查询
和键
之间的关系建模为注意力权重(attention weight)
,这个权重将被分配给每一个对应值
。对于任何查询,模型在所有键值对注意力权重都是一个有效的概率分布:它们是非负的,并且总和为1。
为了更好地理解注意力汇聚,下面考虑一个高斯核(Gaussian kernel),其定义为:
将高斯核代入公式(4)和公式(3)可以得到:
在公式(6)中,如果一个键
越是接近给定的查询
,那么分配给这个键对应值
的注意力权重就会越大,也就“获得了更多的注意力”。
值得注意的是,Nadaraya-Watson核回归是一个非参数模型。因此,公式(6)是非参数的注意力汇聚(nonparametric attention pooling)模型。接下来,我们将基于这个非参数的注意力汇聚模型来绘制预测结果。从绘制的结果会发现新的模型预测线是平滑的,并且比平均汇聚的预测更接近真实。
# X_repeat的形状:(n_test,n_train),
# 每一行都包含着相同的测试输入(例如:同样的查询)
X_repeat = x_test.repeat_interleave(n_train).reshape((-1, n_train))
# x_train包含着键。attention_weights的形状:(n_test,n_train),
# 每一行都包含着要在给定的每个查询的值(y_train)之间分配的注意力权重
attention_weights = nn.functional.softmax(-(X_repeat - x_train)**2 / 2, dim=1)
# y_hat的每个元素都是值的加权平均值,其中的权重是注意力权重
y_hat = torch.matmul(attention_weights, y_train)
plot_kernel_reg(y_hat)
现在来观察注意力的权重。这里测试数据的输入相当于查询,而训练数据的输入相当于键。因为两个输入都是经过排序的,因此由观察可知“查询-键”对越接近,注意力汇聚的注意力权重就越高。
d2l.show_heatmaps(attention_weights.unsqueeze(0).unsqueeze(0),
xlabel='Sorted training inputs',
ylabel='Sorted testing inputs')
非参数的Nadaraya-Watson核回归具有一致性(consistency)的优点:如果有足够的数据,此模型会收敛到最优结果。尽管如此,我们还是可以轻松地将可学习的参数集成到注意力汇聚中。
例如,与公式(6)略有不同,在下面的查询
和键
之间的距离乘以可学习参数
:
本节的余下部分将通过训练这个模型公式(7)来学习注意力汇聚的参数。
为了更有效地计算小批量数据的注意力,我们可以利用深度学习开发框架中提供的批量矩阵乘法。
假设第一个小批量数据包含
个矩阵
,形状为
,第二个小批量包含
个矩阵
,形状为
。它们的批量矩阵乘法得到
个矩阵
,形状为
。因此,假定两个张量的形状分别是
和
,它们的批量矩阵乘法输出的形状为
。
X = torch.ones((2, 1, 4))
Y = torch.ones((2, 4, 6))
torch.bmm(X, Y).shape
在注意力机制的背景中,我们可以使用小批量矩阵乘法来计算小批量数据中的加权平均值。
weights = torch.ones((2, 10)) * 0.1
values = torch.arange(20.0).reshape((2, 10))
torch.bmm(weights.unsqueeze(1), values.unsqueeze(-1))
基于式(7)中的带参数的注意力汇聚,使用小批量矩阵乘法,定义Nadaraya-Watson核回归的带参数版本为:
class NWKernelRegression(nn.Module):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.w = nn.Parameter(torch.rand((1,), requires_grad=True))
def forward(self, queries, keys, values):
# queries和attention_weights的形状为(查询个数,“键-值”对个数)
queries = queries.repeat_interleave(keys.shape[1]).reshape((-1, keys.shape[1]))
self.attention_weights = nn.functional.softmax(
-((queries - keys) * self.w)**2 / 2, dim=1)
# values的形状为(查询个数,“键-值”对个数)
return torch.bmm(self.attention_weights.unsqueeze(1), values.unsqueeze(-1)).reshape(-1)接下来,将训练数据集变换为键和值用于训练注意力模型。在带参数的注意力汇聚模型中,任何一个训练样本的输入都会和除自己以外的所有训练样本的“键-值”对进行计算,从而得到其对应的预测输出。
# X_tile的形状:(n_train,n_train),每一行都包含着相同的训练输入
X_tile = x_train.repeat((n_train, 1))
# Y_tile的形状:(n_train,n_train),每一行都包含着相同的训练输出
Y_tile = y_train.repeat((n_train, 1))
# keys的形状:('n_train','n_train'-1)
keys = X_tile[(1 - torch.eye(n_train)).type(torch.bool)].reshape((n_train, -1))
# values的形状:('n_train','n_train'-1)
values = Y_tile[(1 - torch.eye(n_train)).type(torch.bool)].reshape((n_train, -1))训练带参数的注意力汇聚模型时,使用平方损失函数和随机梯度下降。
net = NWKernelRegression()
loss = nn.MSELoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(), lr=0.5)
animator = d2l.Animator(xlabel='epoch', ylabel='loss', xlim=[1, 5])
for epoch in range(5):
trainer.zero_grad()
l = loss(net(x_train, keys, values), y_train)
l.sum().backward()
trainer.step()
print(f'epoch {epoch + 1}, loss {float(l.sum()):.6f}')
animator.add(epoch + 1, float(l.sum()))
如下所示,训练完带参数的注意力汇聚模型后可以发现:在尝试拟合带噪声的训练数据时,预测结果绘制的线不如之前非参数模型的平滑。
# keys的形状:(n_test,n_train),每一行包含着相同的训练输入(例如,相同的键)
keys = x_train.repeat((n_test, 1))
# value的形状:(n_test,n_train)
values = y_train.repeat((n_test, 1))
y_hat = net(x_test, keys, values).unsqueeze(1).detach()
plot_kernel_reg(y_hat)
为什么新的模型更不平滑了呢?下面看一下输出结果的绘制图:与非参数的注意力汇聚模型相比,带参数的模型加入可学习的参数后,曲线在注意力权重较大的区域变得更不平滑。
d2l.show_heatmaps(net.attention_weights.unsqueeze(0).unsqueeze(0),
xlabel='Sorted training inputs',
ylabel='Sorted testing inputs')