首页
学习
活动
专区
圈层
工具
发布
社区首页 >专栏 >YOLOv8 入门指南:(3)数据集准备

YOLOv8 入门指南:(3)数据集准备

作者头像
张高兴
发布2025-05-21 13:55:59
发布2025-05-21 13:55:59
4460
举报
文章被收录于专栏:张高兴的博客张高兴的博客

整理数据集

将数据集图像与标签分别放至单独的文件夹,如图像存放至 JPEGImages 文件夹,标签存放至 Annotations 文件夹。

生成训练集与测试集

运行下面的 Python 代码划分数据集

代码语言:javascript
复制
import xml.etree.ElementTree as ET
import os
import random
from shutil import copyfile

def convert(size, box):
    dw = 1./size[0]
    dh = 1./size[1]
    x = (box[0] + box[1])/2.0
    y = (box[2] + box[3])/2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x*dw
    w = w*dw
    y = y*dh
    h = h*dh
    return (x,y,w,h)

def convert_annotation(image_id, annotation_dir, yolo_labels_dir):
    in_file = open(annotation_dir + '/%s.xml' %image_id)
    out_file = open(yolo_labels_dir + '/%s.txt' %image_id, 'w')
    tree=ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)

    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
        bb = convert((w,h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
    in_file.close()
    out_file.close()

# 数据集的标签
classes=['blue_qr', 'green_qr', 'red_qr']
# 训练比例,即将70%的数据划分为训练集
TRAIN_RATIO = 70
# 数据集路径
work_sapce_dir = "D:\\GitHub\\yolov5-docker\\assets\\qr"
# 数据集图像文件夹路径
image_dir = os.path.join(work_sapce_dir, "JPEGImages/")
# 数据集标签文件夹路径
annotation_dir = os.path.join(work_sapce_dir, "Annotations/")

# 划分后的数据集文件夹路径
yolo_dataset_dir = os.path.join(work_sapce_dir, "YoloDataset/")
if not os.path.isdir(yolo_dataset_dir):
    os.mkdir(yolo_dataset_dir)
yolo_images_dir = os.path.join(yolo_dataset_dir, "images/")
if not os.path.isdir(yolo_images_dir):
    os.mkdir(yolo_images_dir)
yolo_labels_dir = os.path.join(yolo_dataset_dir, "labels/")
if not os.path.isdir(yolo_labels_dir):
    os.mkdir(yolo_labels_dir)
yolo_images_train_dir = os.path.join(yolo_images_dir, "train/")
if not os.path.isdir(yolo_images_train_dir):
    os.mkdir(yolo_images_train_dir)
yolo_images_test_dir = os.path.join(yolo_images_dir, "val/")
if not os.path.isdir(yolo_images_test_dir):
    os.mkdir(yolo_images_test_dir)
yolo_labels_train_dir = os.path.join(yolo_labels_dir, "train/")
if not os.path.isdir(yolo_labels_train_dir):
    os.mkdir(yolo_labels_train_dir)
yolo_labels_test_dir = os.path.join(yolo_labels_dir, "val/")
if not os.path.isdir(yolo_labels_test_dir):
    os.mkdir(yolo_labels_test_dir)

train_file = open(os.path.join(yolo_dataset_dir, "yolo_train.txt"), 'w')
test_file = open(os.path.join(yolo_dataset_dir, "yolo_val.txt"), 'w')
train_file.close()
test_file.close()
train_file = open(os.path.join(yolo_dataset_dir, "yolo_train.txt"), 'a')
test_file = open(os.path.join(yolo_dataset_dir, "yolo_val.txt"), 'a')
list_imgs = os.listdir(image_dir) # list image files
prob = random.randint(1, 100)
print("Probability: %d" % prob)
for i in range(0,len(list_imgs)):
    path = os.path.join(image_dir,list_imgs[i])
    if os.path.isfile(path):
        image_path = image_dir + list_imgs[i]
        voc_path = list_imgs[i]
        (nameWithoutExtention, extention) = os.path.splitext(os.path.basename(image_path))
        (voc_nameWithoutExtention, voc_extention) = os.path.splitext(os.path.basename(voc_path))
        annotation_name = nameWithoutExtention + '.xml'
        annotation_path = os.path.join(annotation_dir, annotation_name)
        label_name = nameWithoutExtention + '.txt'
        label_path = os.path.join(yolo_labels_dir, label_name)
    prob = random.randint(1, 100)
    print("Probability: %d" % prob)
    if(prob < TRAIN_RATIO): # train dataset
        if os.path.exists(annotation_path):
            train_file.write(image_path + '\n')
            convert_annotation(nameWithoutExtention, annotation_dir, yolo_labels_dir) # convert label
            copyfile(image_path, yolo_images_train_dir + voc_path)
            copyfile(label_path, yolo_labels_train_dir + label_name)
    else: # test dataset
        if os.path.exists(annotation_path):
            test_file.write(image_path + '\n')
            convert_annotation(nameWithoutExtention, annotation_dir, yolo_labels_dir) # convert label
            copyfile(image_path, yolo_images_test_dir + voc_path)
            copyfile(label_path, yolo_labels_test_dir + label_name)
train_file.close()
test_file.close()

划分后的数据集会存放在 YoloDataset 文件夹中。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2024-03-02,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 土味儿编程 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 整理数据集
    • 生成训练集与测试集
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档