该工作由北京深度逻辑智能科技有限公司×宁波东方理工EIT-NLP实验室联合完成。
语音合成(TTS)技术近十年来突飞猛进,从早期的拼接式合成和统计参数模型,发展到如今的深度神经网络与扩散、GAN 等先进架构,实现了接近真人的自然度与情感表达,广泛赋能智能助手、无障碍阅读、沉浸式娱乐等场景。
然而,这一繁荣几乎局限于英语、普通话等资源充沛的大语种;全球一千多种小语种由于语料稀缺、文字无空格或多音调等复杂语言学特性,在数据收集、文本前端处理和声学建模上都面临巨大挑战,导致高质量 TTS 迟迟无法落地。破解「小语种困境」既是学术前沿课题,也是实现数字包容与多语文化传播的关键。
面对这一挑战,逻辑智能团队提出了一种针对低资源语言 TTS 的解决方案并应用于泰语 TTS 合成,该工作已经被 ACL 2025 Industry track 正式接收!
这项工作提出了一种数据优化驱动的声学建模框架的创新方案,通过从语音、文本、音素、语法等多个维度构建系统化的泰语数据集,并结合先进的声学建模技术,成功实现了在有限资源下的高质量 TTS 合成效果。
此外,该框架还具备 zero-shot 声音克隆的能力,展示了优异的跨场景适用性,为行业提供了一种在数据稀少环境下高效构建小语种 TTS 系统的有效范式,对推动全球小语种 TTS 技术的落地与普及具有重要的启示和借鉴意义。
该工作遵循数据驱动模型能力的整体思路:
整套框架以数据质量为核心抓手、以模块化设计保障可扩展性,为解决小语种 TTS「数据稀缺 + 语言复杂」双重瓶颈提供了一条可复制、可落地的工程化路径。
该工作构建了一套专为低资源泰语 TTS 设计的多维数据集,涵盖语音、文本和注释三大类:
该工作设计了一套强大的预处理流程。预处理流水线最大的亮点在于「三步一体、逐层解耦」地化解泰语文本的无标点、无空格、声调复杂三重难题:
该流水线不仅输出结构化的「音素-声调」序列,大幅降低后续声学模型学习难度,也为其他低资源音调语言提供了可复用的文本前端范式。
该工作的 TTS 模型集成了「多源特征 × 声调感知 × 零样本克隆」的组合设计:
整体采取「先独立训练预测器,再与解码器联合微调」的策略,兼顾稳定性与音质,使模型达到 SOTA 表现并支持零样本声音克隆。
转载请联系本公众号获得授权
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有