
https://github.com/chatchat-space/Langchain-Chatchat
$ python --version
Python 3.11.7接着,创建一个虚拟环境,并在虚拟环境内安装项目的依赖
# 拉取仓库
$ git clone https://github.com/chatchat-space/Langchain-Chatchat.git
# 进入目录
$ cd Langchain-Chatchat
# 安装全部依赖
$ pip install -r requirements.txt
$ pip install -r requirements_api.txt
$ pip install -r requirements_webui.txt
# 默认依赖包括基本运行环境(FAISS向量库)。如果要使用 milvus/pg_vector 等向量库,请将 requirements.txt 中相应依赖取消注释再安装。请注意,LangChain-Chatchat 0.2.x 系列是针对 Langchain 0.0.x 系列版本的,如果你使用的是 Langchain 0.1.x 系列版本,需要降级您的Langchain版本。
如需在本地或离线环境下运行本项目,需要首先将项目所需的模型下载至本地,通常开源 LLM 与 Embedding 模型可以从 HuggingFace 下载。
以本项目中默认使用的 LLM 模型 THUDM/ChatGLM3-6B 与 Embedding 模型 BAAI/bge-large-zh 为例:
下载模型需要先安装 Git LFS ,然后运行
$ git lfs install
$ git clone https://huggingface.co/THUDM/chatglm3-6b
$ git clone https://huggingface.co/BAAI/bge-large-zh按照下列方式初始化自己的知识库和简单的复制配置文件
$ python copy_config_example.py
$ python init_database.py --recreate-vs按照以下命令启动项目
$ python startup.py -a如果正常启动,你将能看到以下界面



以上方式只是为了快速上手,如果需要更多的功能和自定义启动方式 ,请参考Wiki