首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >[yolov11改进系列]使用轻量级反向残差块网络EMO替换backbone的python源码+训练源码

[yolov11改进系列]使用轻量级反向残差块网络EMO替换backbone的python源码+训练源码

作者头像
云未归来
发布2025-07-18 15:51:38
发布2025-07-18 15:51:38
16600
代码可运行
举报
运行总次数:0
代码可运行

[EMO网络介绍]

1. EMO简介

反向残差块(Inverted Rsidual Block,IRB)是轻量级CNNs的基础架构,但在基于注意力的研究中还没有相应的对应部分。这项工作从统一的视角重新思考高效IRB和Transformer的有效组件,将基于CNN的IRB扩展到基于注意力的模型,并抽象出一个用于轻量级模型设计的单残差元移动块(Meta Mobile Block,MMB)。本文推导出了一个现代化的方向残差移动块(Inverted Residual Mobile Block, iRMB),仅使用iRMB构建一个类似ResNet的高效模型(Efficient Model, EMO),用于下游任务。

2. EMO 创新点

EMO模型基于反向残差块,是一种轻量级CNN的基础架构,同时融合了Transformer的有效组件。通过这种结合,EMO实现了一个统一的视角来处理轻量级模型的设计,创新的将CNN和注意力机制相结合。

EMO的基本原理可以分成以下几个要点:

  1. 反向残差块(IRB)的应用:IRB作为轻量级CNN的基础架构,EMO将其扩展到基于注意力的模型
  2. 元移动块(MMB)的抽象化:EMO提出了一种新的轻量级设计方法。即单残差的元移动块(MMB),这是从IRB和Transformer的有效组件中抽象出来的
  3. 现代反向残差移动块(iRMB)的构建:基于简单但有效的设计标准,EMO推导了iRMB,并以此构建了类似于Reset的高效模型(EMO)

3. EMO模型架构

左侧:一个抽象统一的元移动块(Meta-Mobile Block),融合了多头自注意机制(Multi-Head Self-Attention),前馈网络(Feed-Forward Network)和反向残差块(Inverted Residual Block)。这个符合模块通过不同的扩展比率和高效的操作符进行具体化

右侧:一个类似于ResNet的EMO模型架构,完全由推导出的iRMB组成。图中突出了EMO模型中微操作组合(如深度可分离卷积,窗口Transformer等)和不同尺度的网络层次,这些都是用于分类,检测和分割任务的。

【yolov11框架介绍】

2024 年 9 月 30 日,Ultralytics 在其活动 YOLOVision 中正式发布了 YOLOv11。YOLOv11 是 YOLO 的最新版本,由美国和西班牙的 Ultralytics 团队开发。YOLO 是一种用于基于图像的人工智能的计算机模

Ultralytics YOLO11 概述

YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。

Key Features 主要特点
  • 增强的特征提取:YOLO11采用改进的主干和颈部架构,增强了特征提取能力,以实现更精确的目标检测和复杂任务性能。
  • 针对效率和速度进行优化:YOLO11 引入了精致的架构设计和优化的训练管道,提供更快的处理速度并保持准确性和性能之间的最佳平衡。
  • 使用更少的参数获得更高的精度:随着模型设计的进步,YOLO11m 在 COCO 数据集上实现了更高的平均精度(mAP),同时使用的参数比 YOLOv8m 少 22%,从而在不影响精度的情况下提高计算效率。
  • 跨环境适应性:YOLO11可以无缝部署在各种环境中,包括边缘设备、云平台以及支持NVIDIA GPU的系统,确保最大的灵活性。
  • 支持的任务范围广泛:无论是对象检测、实例分割、图像分类、姿态估计还是定向对象检测 (OBB),YOLO11 旨在应对各种计算机视觉挑战。

​​

与之前的版本相比,Ultralytics YOLO11 有哪些关键改进?

Ultralytics YOLO11 与其前身相比引入了多项重大进步。主要改进包括:

  • 增强的特征提取:YOLO11采用改进的主干和颈部架构,增强了特征提取能力,以实现更精确的目标检测。
  • 优化的效率和速度:精细的架构设计和优化的训练管道可提供更快的处理速度,同时保持准确性和性能之间的平衡。
  • 使用更少的参数获得更高的精度:YOLO11m 在 COCO 数据集上实现了更高的平均精度(mAP),参数比 YOLOv8m 少 22%,从而在不影响精度的情况下提高计算效率。
  • 跨环境适应性:YOLO11可以跨各种环境部署,包括边缘设备、云平台和支持NVIDIA GPU的系统。
  • 支持的任务范围广泛:YOLO11 支持多种计算机视觉任务,例如对象检测、实例分割、图像分类、姿态估计和定向对象检测 (OBB)

【测试环境】

windows10 x64

ultralytics==8.3.0

torch==2.3.1

【改进流程】

1. 新增EMO.py实现模块(代码太多,核心模块源码请参考改进步骤.docx)然后在同级目录下面创建一个__init___.py文件写代码

from .EMO import *

2. 文件修改步骤

修改tasks.py文件

创建模型配置文件

yolo11-EMO.yaml内容如下:

代码语言:javascript
代码运行次数:0
运行
复制
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# 我提供了版本分别是对应是 ['EMO_1M', 'EMO_2M', 'EMO_5M', 'EMO_6M']
# 其中n是对应yolo的版本通道放缩 large 和 small 是模型官方本身自带的版本
# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, EMO_1M, [0.25]] # 0-4 P1/2 这里是四层
  # 注意args位置的参数对应模型的通道放缩系数width在上面scales位置, 假设你用yolov11n那么可以设置0.25 如果你用yolov11s可以设置0.5
  - [-1, 1, SPPF, [1024, 5]] # 5
  - [-1, 2, C2PSA, [1024]] # 6

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 3], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 9

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 2], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 12 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 9], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 15 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 6], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 18 (P5/32-large)

  - [[12, 15, 18], 1, Detect, [nc]] # Detect(P3, P4, P5)
3. 验证集成

使用新建的yaml配置文件启动训练任务:

代码语言:javascript
代码运行次数:0
运行
复制
from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO('yolo11-EMO.yaml')  # build from YAML and transfer weights
        # Train the model
    results = model.train(data='coco128.yaml',epochs=100, imgsz=640, batch=8, device=0, workers=1, save=True,resume=False)

成功集成后,训练日志中将显示EMO模块的初始化信息,表明已正确加载到模型中。

【训练说明】

第一步:首先安装好yolov11必要模块,可以参考yolov11框架安装流程,然后卸载官方版本pip uninstall ultralytics,最后安装改进的源码pip install . 第二步:将自己数据集按照dataset文件夹摆放,要求文件夹名字都不要改变 第三步:分别打开train.py,coco128.yaml和模型参数yaml文件修改必要的参数,最后执行python train.py即可训练

【提供文件】

代码语言:javascript
代码运行次数:0
运行
复制
├── [官方源码]ultralytics-8.3.0.zip
├── train/
│   ├── coco128.yaml
│   ├── dataset/
│   │   ├── train/
│   │   │   ├── images/
│   │   │   │   ├── firc_pic_1.jpg
│   │   │   │   ├── firc_pic_10.jpg
│   │   │   │   ├── firc_pic_11.jpg
│   │   │   │   ├── firc_pic_12.jpg
│   │   │   │   ├── firc_pic_13.jpg
│   │   │   ├── labels/
│   │   │   │   ├── classes.txt
│   │   │   │   ├── firc_pic_1.txt
│   │   │   │   ├── firc_pic_10.txt
│   │   │   │   ├── firc_pic_11.txt
│   │   │   │   ├── firc_pic_12.txt
│   │   │   │   ├── firc_pic_13.txt
│   │   └── val/
│   │       ├── images/
│   │       │   ├── firc_pic_100.jpg
│   │       │   ├── firc_pic_81.jpg
│   │       │   ├── firc_pic_82.jpg
│   │       │   ├── firc_pic_83.jpg
│   │       │   ├── firc_pic_84.jpg
│   │       ├── labels/
│   │       │   ├── firc_pic_100.txt
│   │       │   ├── firc_pic_81.txt
│   │       │   ├── firc_pic_82.txt
│   │       │   ├── firc_pic_83.txt
│   │       │   ├── firc_pic_84.txt
│   ├── train.py
│   ├── yolo11-EMO.yaml
│   └── 训练说明.txt
├── [改进源码]ultralytics-8.3.0.zip
├── 改进原理.docx
└── 改进流程.docx

【常见问题汇总】 问:为什么我训练的模型epoch显示的map都是0或者map精度很低? 回答:由于源码改进过,因此不能直接从官方模型微调,而是从头训练,这样学习特征能力会很弱,需要训练很多epoch才能出现效果。此外由于改进的源码框架并不一定能够保证会超过官方精度,而且也有可能会存在远远不如官方效果,甚至精度会很低。这说明改进的框架并不能取得很好效果。所以说对于框架改进只是提供一种可行方案,至于改进后能不能取得很好map还需要结合实际训练情况确认,当然也不排除数据集存在问题,比如数据集比较单一,样本分布不均衡,泛化场景少,标注框不太贴合标注质量差,检测目标很小等等原因 【重要说明】 我们只提供改进框架一种方案,并不保证能够取得很好训练精度,甚至超过官方模型精度。因为改进框架,实际是一种比较复杂流程,包括框架原理可行性,训练数据集是否合适,训练需要反正验证以及同类框架训练结果参数比较,这个是十分复杂且漫长的过程。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2025-05-28,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. EMO简介
  • 2. EMO 创新点
  • 3. EMO模型架构
    • Ultralytics YOLO11 概述
    • Key Features 主要特点
      • 与之前的版本相比,Ultralytics YOLO11 有哪些关键改进?
      • 1. 新增EMO.py实现模块(代码太多,核心模块源码请参考改进步骤.docx)然后在同级目录下面创建一个__init___.py文件写代码
      • 2. 文件修改步骤
      • 3. 验证集成
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档