网上基本没有这个报错的解决方法,最终被我找出来了,原因生成lmdb问题,在生成lmdb时候,要把编码打开
--encode_type=jpg --encoded=True,一开始我设置为空,encoded=False就会报类似于Check failed: height <= datum_height或者
Check failed: height == datum_height或者Check failed: height >= datum_height的错误,如果不想编码也可以,进过实验证明,只要把数据增强部分删除也可以正常训练,先前train.prototxt是这样的
name: "VGG_VOC0712_SSD_300x300_train" layer { name: "data" type: "AnnotatedData" top: "data" top: "label" include { phase: TRAIN } transform_param { mirror: true mean_value: 104 mean_value: 117 mean_value: 123 resize_param { prob: 1 resize_mode: WARP height: 300 width: 300 interp_mode: LINEAR interp_mode: AREA interp_mode: NEAREST interp_mode: CUBIC interp_mode: LANCZOS4 } emit_constraint { emit_type: CENTER } } data_param { source: "D:/caffe-ssd-microsoft/myproj/lmdb/train_lmdb" batch_size: 32 backend: LMDB } annotated_data_param { batch_sampler { max_sample: 1 max_trials: 1 } batch_sampler { sampler { min_scale: 0.3 max_scale: 1.0 min_aspect_ratio: 0.5 max_aspect_ratio: 2.0 } sample_constraint { min_jaccard_overlap: 0.1 } max_sample: 1 max_trials: 50 } batch_sampler { sampler { min_scale: 0.3 max_scale: 1.0 min_aspect_ratio: 0.5 max_aspect_ratio: 2.0 } sample_constraint { min_jaccard_overlap: 0.3 } max_sample: 1 max_trials: 50 } batch_sampler { sampler { min_scale: 0.3 max_scale: 1.0 min_aspect_ratio: 0.5 max_aspect_ratio: 2.0 } sample_constraint { min_jaccard_overlap: 0.5 } max_sample: 1 max_trials: 50 } batch_sampler { sampler { min_scale: 0.3 max_scale: 1.0 min_aspect_ratio: 0.5 max_aspect_ratio: 2.0 } sample_constraint { min_jaccard_overlap: 0.7 } max_sample: 1 max_trials: 50 } batch_sampler { sampler { min_scale: 0.3 max_scale: 1.0 min_aspect_ratio: 0.5 max_aspect_ratio: 2.0 } sample_constraint { min_jaccard_overlap: 0.9 } max_sample: 1 max_trials: 50 } batch_sampler { sampler { min_scale: 0.3 max_scale: 1.0 min_aspect_ratio: 0.5 max_aspect_ratio: 2.0 } sample_constraint { max_jaccard_overlap: 1.0 } max_sample: 1 max_trials: 50 } label_map_file: ">D:/caffe-ssd-microsoft/myproj/prototxt/labelmap_voc.prototxt" } }
layer { name: "conv1_1" type: "Convolution" bottom: "data" top: "conv1_1" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu1_1" type: "ReLU" bottom: "conv1_1" top: "conv1_1" } layer { name: "conv1_2" type: "Convolution" bottom: "conv1_1" top: "conv1_2" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu1_2" type: "ReLU" bottom: "conv1_2" top: "conv1_2" } layer { name: "pool1" type: "Pooling" bottom: "conv1_2" top: "pool1" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv2_1" type: "Convolution" bottom: "pool1" top: "conv2_1" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu2_1" type: "ReLU" bottom: "conv2_1" top: "conv2_1" } layer { name: "conv2_2" type: "Convolution" bottom: "conv2_1" top: "conv2_2" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu2_2" type: "ReLU" bottom: "conv2_2" top: "conv2_2" } layer { name: "pool2" type: "Pooling" bottom: "conv2_2" top: "pool2" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv3_1" type: "Convolution" bottom: "pool2" top: "conv3_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu3_1" type: "ReLU" bottom: "conv3_1" top: "conv3_1" } layer { name: "conv3_2" type: "Convolution" bottom: "conv3_1" top: "conv3_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu3_2" type: "ReLU" bottom: "conv3_2" top: "conv3_2" } layer { name: "conv3_3" type: "Convolution" bottom: "conv3_2" top: "conv3_3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu3_3" type: "ReLU" bottom: "conv3_3" top: "conv3_3" } layer { name: "pool3" type: "Pooling" bottom: "conv3_3" top: "pool3" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv4_1" type: "Convolution" bottom: "pool3" top: "conv4_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 512 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu4_1" type: "ReLU" bottom: "conv4_1" top: "conv4_1" } layer { name: "conv4_2" type: "Convolution" bottom: "conv4_1" top: "conv4_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 512 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu4_2" type: "ReLU" bottom: "conv4_2" top: "conv4_2" } layer { name: "conv4_3" type: "Convolution" bottom: "conv4_2" top: "conv4_3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 512 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu4_3" type: "ReLU" bottom: "conv4_3" top: "conv4_3" } layer { name: "pool4" type: "Pooling" bottom: "conv4_3" top: "pool4" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv5_1" type: "Convolution" bottom: "pool4" top: "conv5_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 512 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu5_1" type: "ReLU" bottom: "conv5_1" top: "conv5_1" } layer { name: "conv5_2" type: "Convolution" bottom: "conv5_1" top: "conv5_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 512 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu5_2" type: "ReLU" bottom: "conv5_2" top: "conv5_2" } layer { name: "conv5_3" type: "Convolution" bottom: "conv5_2" top: "conv5_3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 512 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu5_3" type: "ReLU" bottom: "conv5_3" top: "conv5_3" } layer { name: "pool5" type: "Pooling" bottom: "conv5_3" top: "pool5" pooling_param { pool: MAX kernel_size: 3 stride: 1 pad: 1 } } layer { name: "fc6" type: "Convolution" bottom: "pool5" top: "fc6" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 1024 pad: 6 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } dilation: 6 } } layer { name: "relu6" type: "ReLU" bottom: "fc6" top: "fc6" } layer { name: "fc7" type: "Convolution" bottom: "fc6" top: "fc7" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 1024 kernel_size: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu7" type: "ReLU" bottom: "fc7" top: "fc7" } layer { name: "conv6_1" type: "Convolution" bottom: "fc7" top: "conv6_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv6_1_relu" type: "ReLU" bottom: "conv6_1" top: "conv6_1" } layer { name: "conv6_2" type: "Convolution" bottom: "conv6_1" top: "conv6_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 512 pad: 1 kernel_size: 3 stride: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv6_2_relu" type: "ReLU" bottom: "conv6_2" top: "conv6_2" } layer { name: "conv7_1" type: "Convolution" bottom: "conv6_2" top: "conv7_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 128 pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv7_1_relu" type: "ReLU" bottom: "conv7_1" top: "conv7_1" } layer { name: "conv7_2" type: "Convolution" bottom: "conv7_1" top: "conv7_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 stride: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv7_2_relu" type: "ReLU" bottom: "conv7_2" top: "conv7_2" } layer { name: "conv8_1" type: "Convolution" bottom: "conv7_2" top: "conv8_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 128 pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv8_1_relu" type: "ReLU" bottom: "conv8_1" top: "conv8_1" } layer { name: "conv8_2" type: "Convolution" bottom: "conv8_1" top: "conv8_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 stride: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv8_2_relu" type: "ReLU" bottom: "conv8_2" top: "conv8_2" } layer { name: "pool6" type: "Pooling" bottom: "conv8_2" top: "pool6" pooling_param { pool: AVE global_pooling: true } } layer { name: "conv4_3_norm" type: "Normalize" bottom: "conv4_3" top: "conv4_3_norm" norm_param { across_spatial: false scale_filler { type: "constant" value: 20 } channel_shared: false } } layer { name: "conv4_3_norm_mbox_loc" type: "Convolution" bottom: "conv4_3_norm" top: "conv4_3_norm_mbox_loc" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 12 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv4_3_norm_mbox_loc_perm" type: "Permute" bottom: "conv4_3_norm_mbox_loc" top: "conv4_3_norm_mbox_loc_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv4_3_norm_mbox_loc_flat" type: "Flatten" bottom: "conv4_3_norm_mbox_loc_perm" top: "conv4_3_norm_mbox_loc_flat" flatten_param { axis: 1 } } layer { name: "conv4_3_norm_mbox_conf" type: "Convolution" bottom: "conv4_3_norm" top: "conv4_3_norm_mbox_conf" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 63 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv4_3_norm_mbox_conf_perm" type: "Permute" bottom: "conv4_3_norm_mbox_conf" top: "conv4_3_norm_mbox_conf_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv4_3_norm_mbox_conf_flat" type: "Flatten" bottom: "conv4_3_norm_mbox_conf_perm" top: "conv4_3_norm_mbox_conf_flat" flatten_param { axis: 1 } } layer { name: "conv4_3_norm_mbox_priorbox" type: "PriorBox" bottom: "conv4_3_norm" bottom: "data" top: "conv4_3_norm_mbox_priorbox" prior_box_param { min_size: 30.0 aspect_ratio: 2 flip: true clip: true variance: 0.1 variance: 0.1 variance: 0.2 variance: 0.2 } } layer { name: "fc7_mbox_loc" type: "Convolution" bottom: "fc7" top: "fc7_mbox_loc" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 24 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "fc7_mbox_loc_perm" type: "Permute" bottom: "fc7_mbox_loc" top: "fc7_mbox_loc_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "fc7_mbox_loc_flat" type: "Flatten" bottom: "fc7_mbox_loc_perm" top: "fc7_mbox_loc_flat" flatten_param { axis: 1 } } layer { name: "fc7_mbox_conf" type: "Convolution" bottom: "fc7" top: "fc7_mbox_conf" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 126 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "fc7_mbox_conf_perm" type: "Permute" bottom: "fc7_mbox_conf" top: "fc7_mbox_conf_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "fc7_mbox_conf_flat" type: "Flatten" bottom: "fc7_mbox_conf_perm" top: "fc7_mbox_conf_flat" flatten_param { axis: 1 } } layer { name: "fc7_mbox_priorbox" type: "PriorBox" bottom: "fc7" bottom: "data" top: "fc7_mbox_priorbox" prior_box_param { min_size: 60.0 max_size: 114.0 aspect_ratio: 2 aspect_ratio: 3 flip: true clip: true variance: 0.1 variance: 0.1 variance: 0.2 variance: 0.2 } } layer { name: "conv6_2_mbox_loc" type: "Convolution" bottom: "conv6_2" top: "conv6_2_mbox_loc" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 24 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv6_2_mbox_loc_perm" type: "Permute" bottom: "conv6_2_mbox_loc" top: "conv6_2_mbox_loc_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv6_2_mbox_loc_flat" type: "Flatten" bottom: "conv6_2_mbox_loc_perm" top: "conv6_2_mbox_loc_flat" flatten_param { axis: 1 } } layer { name: "conv6_2_mbox_conf" type: "Convolution" bottom: "conv6_2" top: "conv6_2_mbox_conf" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 126 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv6_2_mbox_conf_perm" type: "Permute" bottom: "conv6_2_mbox_conf" top: "conv6_2_mbox_conf_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv6_2_mbox_conf_flat" type: "Flatten" bottom: "conv6_2_mbox_conf_perm" top: "conv6_2_mbox_conf_flat" flatten_param { axis: 1 } } layer { name: "conv6_2_mbox_priorbox" type: "PriorBox" bottom: "conv6_2" bottom: "data" top: "conv6_2_mbox_priorbox" prior_box_param { min_size: 114.0 max_size: 168.0 aspect_ratio: 2 aspect_ratio: 3 flip: true clip: true variance: 0.1 variance: 0.1 variance: 0.2 variance: 0.2 } } layer { name: "conv7_2_mbox_loc" type: "Convolution" bottom: "conv7_2" top: "conv7_2_mbox_loc" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 24 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv7_2_mbox_loc_perm" type: "Permute" bottom: "conv7_2_mbox_loc" top: "conv7_2_mbox_loc_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv7_2_mbox_loc_flat" type: "Flatten" bottom: "conv7_2_mbox_loc_perm" top: "conv7_2_mbox_loc_flat" flatten_param { axis: 1 } } layer { name: "conv7_2_mbox_conf" type: "Convolution" bottom: "conv7_2" top: "conv7_2_mbox_conf" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 126 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv7_2_mbox_conf_perm" type: "Permute" bottom: "conv7_2_mbox_conf" top: "conv7_2_mbox_conf_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv7_2_mbox_conf_flat" type: "Flatten" bottom: "conv7_2_mbox_conf_perm" top: "conv7_2_mbox_conf_flat" flatten_param { axis: 1 } } layer { name: "conv7_2_mbox_priorbox" type: "PriorBox" bottom: "conv7_2" bottom: "data" top: "conv7_2_mbox_priorbox" prior_box_param { min_size: 168.0 max_size: 222.0 aspect_ratio: 2 aspect_ratio: 3 flip: true clip: true variance: 0.1 variance: 0.1 variance: 0.2 variance: 0.2 } } layer { name: "conv8_2_mbox_loc" type: "Convolution" bottom: "conv8_2" top: "conv8_2_mbox_loc" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 24 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv8_2_mbox_loc_perm" type: "Permute" bottom: "conv8_2_mbox_loc" top: "conv8_2_mbox_loc_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv8_2_mbox_loc_flat" type: "Flatten" bottom: "conv8_2_mbox_loc_perm" top: "conv8_2_mbox_loc_flat" flatten_param { axis: 1 } } layer { name: "conv8_2_mbox_conf" type: "Convolution" bottom: "conv8_2" top: "conv8_2_mbox_conf" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 126 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv8_2_mbox_conf_perm" type: "Permute" bottom: "conv8_2_mbox_conf" top: "conv8_2_mbox_conf_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv8_2_mbox_conf_flat" type: "Flatten" bottom: "conv8_2_mbox_conf_perm" top: "conv8_2_mbox_conf_flat" flatten_param { axis: 1 } } layer { name: "conv8_2_mbox_priorbox" type: "PriorBox" bottom: "conv8_2" bottom: "data" top: "conv8_2_mbox_priorbox" prior_box_param { min_size: 222.0 max_size: 276.0 aspect_ratio: 2 aspect_ratio: 3 flip: true clip: true variance: 0.1 variance: 0.1 variance: 0.2 variance: 0.2 } } layer { name: "pool6_mbox_loc" type: "Convolution" bottom: "pool6" top: "pool6_mbox_loc" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 24 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "pool6_mbox_loc_perm" type: "Permute" bottom: "pool6_mbox_loc" top: "pool6_mbox_loc_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "pool6_mbox_loc_flat" type: "Flatten" bottom: "pool6_mbox_loc_perm" top: "pool6_mbox_loc_flat" flatten_param { axis: 1 } } layer { name: "pool6_mbox_conf" type: "Convolution" bottom: "pool6" top: "pool6_mbox_conf" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 126 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "pool6_mbox_conf_perm" type: "Permute" bottom: "pool6_mbox_conf" top: "pool6_mbox_conf_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "pool6_mbox_conf_flat" type: "Flatten" bottom: "pool6_mbox_conf_perm" top: "pool6_mbox_conf_flat" flatten_param { axis: 1 } } layer { name: "pool6_mbox_priorbox" type: "PriorBox" bottom: "pool6" bottom: "data" top: "pool6_mbox_priorbox" prior_box_param { min_size: 276.0 max_size: 330.0 aspect_ratio: 2 aspect_ratio: 3 flip: true clip: true variance: 0.1 variance: 0.1 variance: 0.2 variance: 0.2 } } layer { name: "mbox_loc" type: "Concat" bottom: "conv4_3_norm_mbox_loc_flat" bottom: "fc7_mbox_loc_flat" bottom: "conv6_2_mbox_loc_flat" bottom: "conv7_2_mbox_loc_flat" bottom: "conv8_2_mbox_loc_flat" bottom: "pool6_mbox_loc_flat" top: "mbox_loc" concat_param { axis: 1 } } layer { name: "mbox_conf" type: "Concat" bottom: "conv4_3_norm_mbox_conf_flat" bottom: "fc7_mbox_conf_flat" bottom: "conv6_2_mbox_conf_flat" bottom: "conv7_2_mbox_conf_flat" bottom: "conv8_2_mbox_conf_flat" bottom: "pool6_mbox_conf_flat" top: "mbox_conf" concat_param { axis: 1 } } layer { name: "mbox_priorbox" type: "Concat" bottom: "conv4_3_norm_mbox_priorbox" bottom: "fc7_mbox_priorbox" bottom: "conv6_2_mbox_priorbox" bottom: "conv7_2_mbox_priorbox" bottom: "conv8_2_mbox_priorbox" bottom: "pool6_mbox_priorbox" top: "mbox_priorbox" concat_param { axis: 2 } } layer { name: "mbox_loss" type: "MultiBoxLoss" bottom: "mbox_loc" bottom: "mbox_conf" bottom: "mbox_priorbox" bottom: "label" top: "mbox_loss" include { phase: TRAIN } propagate_down: true propagate_down: true propagate_down: false propagate_down: false loss_param { normalization: VALID } multibox_loss_param { loc_loss_type: SMOOTH_L1 conf_loss_type: SOFTMAX loc_weight: 1.0 num_classes: 21 share_location: true match_type: PER_PREDICTION overlap_threshold: 0.5 use_prior_for_matching: true background_label_id: 0 use_difficult_gt: true do_neg_mining: true neg_pos_ratio: 3.0 neg_overlap: 0.5 code_type: CENTER_SIZE } }
修改后
name: "VGG_VOC0712_SSD_300x300_train" layer { name: "data" type: "AnnotatedData" top: "data" top: "label" include { phase: TRAIN } transform_param { mirror: true mean_value: 104 mean_value: 117 mean_value: 123 resize_param { prob: 1 resize_mode: WARP height: 300 width: 300 interp_mode: LINEAR interp_mode: AREA interp_mode: NEAREST interp_mode: CUBIC interp_mode: LANCZOS4 } emit_constraint { emit_type: CENTER } } data_param { source: "D:/caffe-ssd-microsoft/myproj/lmdb/train_lmdb" batch_size: 32 backend: LMDB } annotated_data_param { label_map_file: ">D:/caffe-ssd-microsoft/myproj/prototxt/labelmap_voc.prototxt" } }
layer { name: "conv1_1" type: "Convolution" bottom: "data" top: "conv1_1" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu1_1" type: "ReLU" bottom: "conv1_1" top: "conv1_1" } layer { name: "conv1_2" type: "Convolution" bottom: "conv1_1" top: "conv1_2" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu1_2" type: "ReLU" bottom: "conv1_2" top: "conv1_2" } layer { name: "pool1" type: "Pooling" bottom: "conv1_2" top: "pool1" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv2_1" type: "Convolution" bottom: "pool1" top: "conv2_1" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu2_1" type: "ReLU" bottom: "conv2_1" top: "conv2_1" } layer { name: "conv2_2" type: "Convolution" bottom: "conv2_1" top: "conv2_2" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } convolution_param { num_output: 128 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu2_2" type: "ReLU" bottom: "conv2_2" top: "conv2_2" } layer { name: "pool2" type: "Pooling" bottom: "conv2_2" top: "pool2" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv3_1" type: "Convolution" bottom: "pool2" top: "conv3_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu3_1" type: "ReLU" bottom: "conv3_1" top: "conv3_1" } layer { name: "conv3_2" type: "Convolution" bottom: "conv3_1" top: "conv3_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu3_2" type: "ReLU" bottom: "conv3_2" top: "conv3_2" } layer { name: "conv3_3" type: "Convolution" bottom: "conv3_2" top: "conv3_3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu3_3" type: "ReLU" bottom: "conv3_3" top: "conv3_3" } layer { name: "pool3" type: "Pooling" bottom: "conv3_3" top: "pool3" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv4_1" type: "Convolution" bottom: "pool3" top: "conv4_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 512 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu4_1" type: "ReLU" bottom: "conv4_1" top: "conv4_1" } layer { name: "conv4_2" type: "Convolution" bottom: "conv4_1" top: "conv4_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 512 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu4_2" type: "ReLU" bottom: "conv4_2" top: "conv4_2" } layer { name: "conv4_3" type: "Convolution" bottom: "conv4_2" top: "conv4_3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 512 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu4_3" type: "ReLU" bottom: "conv4_3" top: "conv4_3" } layer { name: "pool4" type: "Pooling" bottom: "conv4_3" top: "pool4" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv5_1" type: "Convolution" bottom: "pool4" top: "conv5_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 512 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu5_1" type: "ReLU" bottom: "conv5_1" top: "conv5_1" } layer { name: "conv5_2" type: "Convolution" bottom: "conv5_1" top: "conv5_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 512 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu5_2" type: "ReLU" bottom: "conv5_2" top: "conv5_2" } layer { name: "conv5_3" type: "Convolution" bottom: "conv5_2" top: "conv5_3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 512 pad: 1 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu5_3" type: "ReLU" bottom: "conv5_3" top: "conv5_3" } layer { name: "pool5" type: "Pooling" bottom: "conv5_3" top: "pool5" pooling_param { pool: MAX kernel_size: 3 stride: 1 pad: 1 } } layer { name: "fc6" type: "Convolution" bottom: "pool5" top: "fc6" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 1024 pad: 6 kernel_size: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } dilation: 6 } } layer { name: "relu6" type: "ReLU" bottom: "fc6" top: "fc6" } layer { name: "fc7" type: "Convolution" bottom: "fc6" top: "fc7" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 1024 kernel_size: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu7" type: "ReLU" bottom: "fc7" top: "fc7" } layer { name: "conv6_1" type: "Convolution" bottom: "fc7" top: "conv6_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv6_1_relu" type: "ReLU" bottom: "conv6_1" top: "conv6_1" } layer { name: "conv6_2" type: "Convolution" bottom: "conv6_1" top: "conv6_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 512 pad: 1 kernel_size: 3 stride: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv6_2_relu" type: "ReLU" bottom: "conv6_2" top: "conv6_2" } layer { name: "conv7_1" type: "Convolution" bottom: "conv6_2" top: "conv7_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 128 pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv7_1_relu" type: "ReLU" bottom: "conv7_1" top: "conv7_1" } layer { name: "conv7_2" type: "Convolution" bottom: "conv7_1" top: "conv7_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 stride: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv7_2_relu" type: "ReLU" bottom: "conv7_2" top: "conv7_2" } layer { name: "conv8_1" type: "Convolution" bottom: "conv7_2" top: "conv8_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 128 pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv8_1_relu" type: "ReLU" bottom: "conv8_1" top: "conv8_1" } layer { name: "conv8_2" type: "Convolution" bottom: "conv8_1" top: "conv8_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 stride: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv8_2_relu" type: "ReLU" bottom: "conv8_2" top: "conv8_2" } layer { name: "pool6" type: "Pooling" bottom: "conv8_2" top: "pool6" pooling_param { pool: AVE global_pooling: true } } layer { name: "conv4_3_norm" type: "Normalize" bottom: "conv4_3" top: "conv4_3_norm" norm_param { across_spatial: false scale_filler { type: "constant" value: 20 } channel_shared: false } } layer { name: "conv4_3_norm_mbox_loc" type: "Convolution" bottom: "conv4_3_norm" top: "conv4_3_norm_mbox_loc" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 12 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv4_3_norm_mbox_loc_perm" type: "Permute" bottom: "conv4_3_norm_mbox_loc" top: "conv4_3_norm_mbox_loc_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv4_3_norm_mbox_loc_flat" type: "Flatten" bottom: "conv4_3_norm_mbox_loc_perm" top: "conv4_3_norm_mbox_loc_flat" flatten_param { axis: 1 } } layer { name: "conv4_3_norm_mbox_conf" type: "Convolution" bottom: "conv4_3_norm" top: "conv4_3_norm_mbox_conf" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 63 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv4_3_norm_mbox_conf_perm" type: "Permute" bottom: "conv4_3_norm_mbox_conf" top: "conv4_3_norm_mbox_conf_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv4_3_norm_mbox_conf_flat" type: "Flatten" bottom: "conv4_3_norm_mbox_conf_perm" top: "conv4_3_norm_mbox_conf_flat" flatten_param { axis: 1 } } layer { name: "conv4_3_norm_mbox_priorbox" type: "PriorBox" bottom: "conv4_3_norm" bottom: "data" top: "conv4_3_norm_mbox_priorbox" prior_box_param { min_size: 30.0 aspect_ratio: 2 flip: true clip: true variance: 0.1 variance: 0.1 variance: 0.2 variance: 0.2 } } layer { name: "fc7_mbox_loc" type: "Convolution" bottom: "fc7" top: "fc7_mbox_loc" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 24 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "fc7_mbox_loc_perm" type: "Permute" bottom: "fc7_mbox_loc" top: "fc7_mbox_loc_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "fc7_mbox_loc_flat" type: "Flatten" bottom: "fc7_mbox_loc_perm" top: "fc7_mbox_loc_flat" flatten_param { axis: 1 } } layer { name: "fc7_mbox_conf" type: "Convolution" bottom: "fc7" top: "fc7_mbox_conf" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 126 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "fc7_mbox_conf_perm" type: "Permute" bottom: "fc7_mbox_conf" top: "fc7_mbox_conf_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "fc7_mbox_conf_flat" type: "Flatten" bottom: "fc7_mbox_conf_perm" top: "fc7_mbox_conf_flat" flatten_param { axis: 1 } } layer { name: "fc7_mbox_priorbox" type: "PriorBox" bottom: "fc7" bottom: "data" top: "fc7_mbox_priorbox" prior_box_param { min_size: 60.0 max_size: 114.0 aspect_ratio: 2 aspect_ratio: 3 flip: true clip: true variance: 0.1 variance: 0.1 variance: 0.2 variance: 0.2 } } layer { name: "conv6_2_mbox_loc" type: "Convolution" bottom: "conv6_2" top: "conv6_2_mbox_loc" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 24 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv6_2_mbox_loc_perm" type: "Permute" bottom: "conv6_2_mbox_loc" top: "conv6_2_mbox_loc_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv6_2_mbox_loc_flat" type: "Flatten" bottom: "conv6_2_mbox_loc_perm" top: "conv6_2_mbox_loc_flat" flatten_param { axis: 1 } } layer { name: "conv6_2_mbox_conf" type: "Convolution" bottom: "conv6_2" top: "conv6_2_mbox_conf" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 126 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv6_2_mbox_conf_perm" type: "Permute" bottom: "conv6_2_mbox_conf" top: "conv6_2_mbox_conf_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv6_2_mbox_conf_flat" type: "Flatten" bottom: "conv6_2_mbox_conf_perm" top: "conv6_2_mbox_conf_flat" flatten_param { axis: 1 } } layer { name: "conv6_2_mbox_priorbox" type: "PriorBox" bottom: "conv6_2" bottom: "data" top: "conv6_2_mbox_priorbox" prior_box_param { min_size: 114.0 max_size: 168.0 aspect_ratio: 2 aspect_ratio: 3 flip: true clip: true variance: 0.1 variance: 0.1 variance: 0.2 variance: 0.2 } } layer { name: "conv7_2_mbox_loc" type: "Convolution" bottom: "conv7_2" top: "conv7_2_mbox_loc" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 24 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv7_2_mbox_loc_perm" type: "Permute" bottom: "conv7_2_mbox_loc" top: "conv7_2_mbox_loc_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv7_2_mbox_loc_flat" type: "Flatten" bottom: "conv7_2_mbox_loc_perm" top: "conv7_2_mbox_loc_flat" flatten_param { axis: 1 } } layer { name: "conv7_2_mbox_conf" type: "Convolution" bottom: "conv7_2" top: "conv7_2_mbox_conf" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 126 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv7_2_mbox_conf_perm" type: "Permute" bottom: "conv7_2_mbox_conf" top: "conv7_2_mbox_conf_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv7_2_mbox_conf_flat" type: "Flatten" bottom: "conv7_2_mbox_conf_perm" top: "conv7_2_mbox_conf_flat" flatten_param { axis: 1 } } layer { name: "conv7_2_mbox_priorbox" type: "PriorBox" bottom: "conv7_2" bottom: "data" top: "conv7_2_mbox_priorbox" prior_box_param { min_size: 168.0 max_size: 222.0 aspect_ratio: 2 aspect_ratio: 3 flip: true clip: true variance: 0.1 variance: 0.1 variance: 0.2 variance: 0.2 } } layer { name: "conv8_2_mbox_loc" type: "Convolution" bottom: "conv8_2" top: "conv8_2_mbox_loc" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 24 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv8_2_mbox_loc_perm" type: "Permute" bottom: "conv8_2_mbox_loc" top: "conv8_2_mbox_loc_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv8_2_mbox_loc_flat" type: "Flatten" bottom: "conv8_2_mbox_loc_perm" top: "conv8_2_mbox_loc_flat" flatten_param { axis: 1 } } layer { name: "conv8_2_mbox_conf" type: "Convolution" bottom: "conv8_2" top: "conv8_2_mbox_conf" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 126 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "conv8_2_mbox_conf_perm" type: "Permute" bottom: "conv8_2_mbox_conf" top: "conv8_2_mbox_conf_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv8_2_mbox_conf_flat" type: "Flatten" bottom: "conv8_2_mbox_conf_perm" top: "conv8_2_mbox_conf_flat" flatten_param { axis: 1 } } layer { name: "conv8_2_mbox_priorbox" type: "PriorBox" bottom: "conv8_2" bottom: "data" top: "conv8_2_mbox_priorbox" prior_box_param { min_size: 222.0 max_size: 276.0 aspect_ratio: 2 aspect_ratio: 3 flip: true clip: true variance: 0.1 variance: 0.1 variance: 0.2 variance: 0.2 } } layer { name: "pool6_mbox_loc" type: "Convolution" bottom: "pool6" top: "pool6_mbox_loc" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 24 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "pool6_mbox_loc_perm" type: "Permute" bottom: "pool6_mbox_loc" top: "pool6_mbox_loc_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "pool6_mbox_loc_flat" type: "Flatten" bottom: "pool6_mbox_loc_perm" top: "pool6_mbox_loc_flat" flatten_param { axis: 1 } } layer { name: "pool6_mbox_conf" type: "Convolution" bottom: "pool6" top: "pool6_mbox_conf" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 126 pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "pool6_mbox_conf_perm" type: "Permute" bottom: "pool6_mbox_conf" top: "pool6_mbox_conf_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "pool6_mbox_conf_flat" type: "Flatten" bottom: "pool6_mbox_conf_perm" top: "pool6_mbox_conf_flat" flatten_param { axis: 1 } } layer { name: "pool6_mbox_priorbox" type: "PriorBox" bottom: "pool6" bottom: "data" top: "pool6_mbox_priorbox" prior_box_param { min_size: 276.0 max_size: 330.0 aspect_ratio: 2 aspect_ratio: 3 flip: true clip: true variance: 0.1 variance: 0.1 variance: 0.2 variance: 0.2 } } layer { name: "mbox_loc" type: "Concat" bottom: "conv4_3_norm_mbox_loc_flat" bottom: "fc7_mbox_loc_flat" bottom: "conv6_2_mbox_loc_flat" bottom: "conv7_2_mbox_loc_flat" bottom: "conv8_2_mbox_loc_flat" bottom: "pool6_mbox_loc_flat" top: "mbox_loc" concat_param { axis: 1 } } layer { name: "mbox_conf" type: "Concat" bottom: "conv4_3_norm_mbox_conf_flat" bottom: "fc7_mbox_conf_flat" bottom: "conv6_2_mbox_conf_flat" bottom: "conv7_2_mbox_conf_flat" bottom: "conv8_2_mbox_conf_flat" bottom: "pool6_mbox_conf_flat" top: "mbox_conf" concat_param { axis: 1 } } layer { name: "mbox_priorbox" type: "Concat" bottom: "conv4_3_norm_mbox_priorbox" bottom: "fc7_mbox_priorbox" bottom: "conv6_2_mbox_priorbox" bottom: "conv7_2_mbox_priorbox" bottom: "conv8_2_mbox_priorbox" bottom: "pool6_mbox_priorbox" top: "mbox_priorbox" concat_param { axis: 2 } } layer { name: "mbox_loss" type: "MultiBoxLoss" bottom: "mbox_loc" bottom: "mbox_conf" bottom: "mbox_priorbox" bottom: "label" top: "mbox_loss" include { phase: TRAIN } propagate_down: true propagate_down: true propagate_down: false propagate_down: false loss_param { normalization: VALID } multibox_loss_param { loc_loss_type: SMOOTH_L1 conf_loss_type: SOFTMAX loc_weight: 1.0 num_classes: 21 share_location: true match_type: PER_PREDICTION overlap_threshold: 0.5 use_prior_for_matching: true background_label_id: 0 use_difficult_gt: true do_neg_mining: true neg_pos_ratio: 3.0 neg_overlap: 0.5 code_type: CENTER_SIZE } }
其实就是把batch_sample那些删除就可以了。最后总结一下
--encode_type=jpg --encoded=True设置编码就直接用上面配置文件即可
--encoded=False删除batc_sampler部配置即用下面配置文件即可