【RepViT介绍】
近年来,在资源受限的移动设备上,与轻量级卷积神经网络相比,轻量级视觉Transformer(ViTs)表现出更高的性能和更低的时延。 这种改进通常归功于多头自注意模块,它使模型能够学习全局表征。 然而,轻量级ViTs和轻量级CNNs之间的体系结构差异还没有得到充分的研究。 在这项研究中,我们重新审视轻量级CNNs的高效设计,并强调它们在移动设备中的潜力。 通过集成轻量级ViTs的高效架构选择,增强了标准轻量级CNN的移动友好性,特别是MobileNetv3。 这最终形成了一个新的纯轻量级CNNs家族,即RepVit。 大量实验表明,RepViT优于现有的轻量级ViTs,并在各种视觉任务中表现出良好的时延。 在ImageNet上,RepViT在iPhone 12上以近1ms的延迟实现了80%以上的Top-1准确率,据我们所知,这是轻量级模型的第一次。 我们最大的模型RepViT-M3,仅用1.3ms的时延就获得了81.4%的准确率。
块设计是 CNN 架构中的一个重要组成部分,优化块设计有助于提高网络的性能。
在这一步,本文进一步优化了MobileNetV3-L在移动设备上的性能,主要是从宏观架构元素出发,包括 stem,降采样层,分类器以及整体阶段比例。通过优化这些宏观架构元素,模型的性能可以得到显著提高。
接下来,RepViT 通过逐层微观设计来调整轻量级 CNN,这包括选择合适的卷积核大小和优化挤压-激励(Squeeze-and-excitation,简称SE)层的位置。这两种方法都能显著改善模型性能。
【yolov11框架介绍】
2024 年 9 月 30 日,Ultralytics 在其活动 YOLOVision 中正式发布了 YOLOv11。YOLOv11 是 YOLO 的最新版本,由美国和西班牙的 Ultralytics 团队开发。YOLO 是一种用于基于图像的人工智能的计算机模
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。
Ultralytics YOLO11 与其前身相比引入了多项重大进步。主要改进包括:
【测试环境】
windows10 x64
ultralytics==8.3.0
torch==2.3.1
【改进流程】
from .RepViT import *
修改tasks.py文件
创建模型配置文件
yolo11-RepViT.yaml内容如下:
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# 下面 [-1, 1, repvit_m0_6, [0.25]] 参数位置的0.25是通道放缩的系数, YOLOv11N是0.25 YOLOv11S是0.5 YOLOv11M是1. YOLOv11l是1 YOLOv11是1.5大家根据自己训练的YOLO版本设定即可.
# 本文支持版本有 __all__ = ['repvit_m0_6','repvit_m0_9', 'repvit_m1_0', 'repvit_m1_1', 'repvit_m1_5', 'repvit_m2_3']
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, repvit_m0_6, [0.5]] # 0-4 P1/2 这里是四层
- [-1, 1, SPPF, [1024, 5]] # 5
- [-1, 2, C2PSA, [1024]] # 6
# YOLO11n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 3], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 9
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 2], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 12 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 9], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 15 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 6], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 18 (P5/32-large)
- [[12, 15, 18], 1, Detect, [nc]] # Detect(P3, P4, P5)
git搜futureflsl/yolo-improve获取源码,然后使用新建的yaml配置文件启动训练任务:
from ultralytics import YOLO
if __name__ == '__main__':
model = YOLO('yolo11-RepViT.yaml') # build from YAML and transfer weights
# Train the model
results = model.train(data='coco128.yaml',epochs=100, imgsz=640, batch=8, device=0, workers=1, save=True,resume=False)
成功集成后,训练日志中将显示RepViT模块的初始化信息,表明已正确加载到模型中。
【训练说明】
第一步:首先安装好yolov11必要模块,可以参考yolov11框架安装流程,然后卸载官方版本pip uninstall ultralytics,最后安装改进的源码pip install . 第二步:将自己数据集按照dataset文件夹摆放,要求文件夹名字都不要改变 第三步:分别打开train.py,coco128.yaml和模型参数yaml文件修改必要的参数,最后执行python train.py即可训练
【提供文件】
├── [官方源码]ultralytics-8.3.0.zip
├── train/
│ ├── coco128.yaml
│ ├── dataset/
│ │ ├── train/
│ │ │ ├── images/
│ │ │ │ ├── firc_pic_1.jpg
│ │ │ │ ├── firc_pic_10.jpg
│ │ │ │ ├── firc_pic_11.jpg
│ │ │ │ ├── firc_pic_12.jpg
│ │ │ │ ├── firc_pic_13.jpg
│ │ │ ├── labels/
│ │ │ │ ├── classes.txt
│ │ │ │ ├── firc_pic_1.txt
│ │ │ │ ├── firc_pic_10.txt
│ │ │ │ ├── firc_pic_11.txt
│ │ │ │ ├── firc_pic_12.txt
│ │ │ │ ├── firc_pic_13.txt
│ │ └── val/
│ │ ├── images/
│ │ │ ├── firc_pic_100.jpg
│ │ │ ├── firc_pic_81.jpg
│ │ │ ├── firc_pic_82.jpg
│ │ │ ├── firc_pic_83.jpg
│ │ │ ├── firc_pic_84.jpg
│ │ ├── labels/
│ │ │ ├── firc_pic_100.txt
│ │ │ ├── firc_pic_81.txt
│ │ │ ├── firc_pic_82.txt
│ │ │ ├── firc_pic_83.txt
│ │ │ ├── firc_pic_84.txt
│ ├── train.py
│ ├── yolo11-RepViT.yaml
│ └── 训练说明.txt
├── [改进源码]ultralytics-8.3.0.zip
├── 改进原理.docx
└── 改进流程.docx
【常见问题汇总】 问:为什么我训练的模型epoch显示的map都是0或者map精度很低? 回答:由于源码改进过,因此不能直接从官方模型微调,而是从头训练,这样学习特征能力会很弱,需要训练很多epoch才能出现效果。此外由于改进的源码框架并不一定能够保证会超过官方精度,而且也有可能会存在远远不如官方效果,甚至精度会很低。这说明改进的框架并不能取得很好效果。所以说对于框架改进只是提供一种可行方案,至于改进后能不能取得很好map还需要结合实际训练情况确认,当然也不排除数据集存在问题,比如数据集比较单一,样本分布不均衡,泛化场景少,标注框不太贴合标注质量差,检测目标很小等等原因 【重要说明】 我们只提供改进框架一种方案,并不保证能够取得很好训练精度,甚至超过官方模型精度。因为改进框架,实际是一种比较复杂流程,包括框架原理可行性,训练数据集是否合适,训练需要反正验证以及同类框架训练结果参数比较,这个是十分复杂且漫长的过程。