
随着城市化进程的加速,城市道路损伤问题日益严重。道路的裂缝、坑洼、井盖移位等问题不仅影响行车安全,也影响市民的出行体验。传统的人工巡检方式费时费力,且容易忽视细节。为了提升道路检测的效率与准确性,基于深度学习的智能检测系统应运而生。
在众多深度学习算法中,YOLO(You Only Look Once)因其高效的目标检测性能,成为了道路损伤检测的首选框架。YOLO模型通过回归的方式对图像中的每个物体进行检测,具有高效、准确的特点,可以实时检测城市道路上的各种损伤。
本项目基于YOLO框架,构建了一个用于城市道路损伤检测与评估的智能系统,能够自动检测路面裂缝、井盖、坑洼路面等常见损伤类型,并提供定量评估。
本系统的主要功能包括:



为了训练YOLO模型,本项目使用了城市道路损伤检测数据集。数据集包含了各种类型的道路损伤图片,包括路面裂缝、井盖问题、坑洼路面等。每张图片都已进行标注,包含损伤类型、位置以及损伤的严重程度。数据集的结构如下:
数据集示例:
/dataset
/train
img1.jpg
img2.jpg
...
/val
img1.jpg
img2.jpg
...
/test
img1.jpg
img2.jpg
...
检测效果

本系统基于以下技术栈实现:
通过使用YOLO模型,本项目能够快速识别并定位城市道路上的各种损伤,显著提高道路检测的效率与准确性。
如果你对项目的实现或数据集的使用有进一步的兴趣,可以查看完整源码与数据集,进行实际部署与测试。
YOLO(You Only Look Once)是单阶段目标检测算法的代表,它将目标检测问题转换为一个回归问题,从图像中直接回归出物体的位置和类别,具有极高的速度优势。YOLOv8作为Ultralytics团队推出的最新版本,具备以下关键特点:

完整项目已打包,包括数据集、模型训练、模型推理、PyQt5桌面GUI、预训练权重、详细部署文档。
至项目实录视频下方获取:https://www.bilibili.com/video/BV1iy75zhEgM/

train.py:YOLOv8训练脚本(自定义配置)detect.py:推理检测脚本(支持图像/摄像头)ui_main.py:基于PyQt5的图形界面runs/weights/best.pt:训练完成的权重文件data/face_expression/:YOLO格式的数据集requirements.txt:项目依赖安装文件📌 运行前请先配置环境:
conda create -n yoloui python=3.9
conda activate yoloui
pip install -r requirements.txt📌 启动界面程序:
python ui_main.py本项目基于深度学习的YOLO框架,成功实现了城市道路损伤的自动检测与评估。通过YOLOv8模型,我们能够高效地识别和分类路面裂缝、井盖移位、坑洼路面等常见的道路损伤类型。系统的核心优势在于其高效性和实时性,能够实时监控城市道路,自动标注损伤类型,并生成损伤评估报告。
项目采用的技术栈包括Python、PyTorch、OpenCV和PyQt5,确保了系统的高效训练和便捷的用户界面操作。数据集方面,我们提供了包含3000+张图像的标注数据集,并按照YOLO格式进行了标注,方便模型的训练和评估。
该系统不仅提升了道路损伤检测的精度与效率,还为相关部门提供了智能化的评估工具,帮助他们更好地掌握道路健康状况、制定维修计划。未来,这一系统可进一步扩展应用至其他城市基础设施的智能化监控和评估中。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。