首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >第八章:CRUD操作与数据管理

第八章:CRUD操作与数据管理

作者头像
javpower
发布2025-08-06 17:32:28
发布2025-08-06 17:32:28
14800
代码可运行
举报
运行总次数:0
代码可运行

第八章:CRUD操作与数据管理

8.1 完整CRUD操作设计

8.1.1 CRUD操作概述

向量数据库需要支持完整的CRUD(Create, Read, Update, Delete)操作,同时保证操作的一致性、并发安全性和高性能。

8.1.2 统一操作接口

代码语言:javascript
代码运行次数:0
运行
复制
package com.jvector.api;

import com.jvector.core.Vector;
import com.jvector.core.SearchResult;
import java.util.List;
import java.util.Optional;
import java.util.Map;

/**
 * 向量数据库CRUD操作接口
 */
public interface VectorCrudOperations {

    // === CREATE操作 ===

    /**
     * 添加单个向量
     */
    long add(Vector vector);

    /**
     * 添加带ID的向量
     */
    void add(long id, Vector vector);

    /**
     * 批量添加向量
     */
    List<Long> addBatch(List<Vector> vectors);

    /**
     * 批量添加带ID的向量
     */
    void addBatch(Map<Long, Vector> vectors);

    // === READ操作 ===

    /**
     * 根据ID获取向量
     */
    Optional<Vector> get(long id);

    /**
     * 批量获取向量
     */
    Map<Long, Vector> getBatch(List<Long> ids);

    /**
     * 搜索最相似的K个向量
     */
    List<SearchResult> search(Vector query, int k);

    /**
     * 高级搜索(带参数)
     */
    List<SearchResult> search(Vector query, int k, SearchOptions options);

    /**
     * 范围搜索
     */
    List<SearchResult> searchWithinDistance(Vector query, float maxDistance);

    // === UPDATE操作 ===

    /**
     * 更新向量
     */
    boolean update(long id, Vector newVector);

    /**
     * 批量更新向量
     */
    Map<Long, Boolean> updateBatch(Map<Long, Vector> vectors);

    // === DELETE操作 ===

    /**
     * 删除单个向量
     */
    boolean delete(long id);

    /**
     * 批量删除向量
     */
    Map<Long, Boolean> deleteBatch(List<Long> ids);

    // === 统计信息 ===

    /**
     * 获取向量总数
     */
    long size();

    /**
     * 检查向量是否存在
     */
    boolean contains(long id);

    /**
     * 获取所有向量ID
     */
    List<Long> getAllIds();
}

8.2 添加操作的实现与优化

8.2.1 单个向量添加

代码语言:javascript
代码运行次数:0
运行
复制
/**
 * 向量添加操作实现
 */
public class VectorAddOperation {
    private static final Logger logger = LoggerFactory.getLogger(VectorAddOperation.class);

    private final HnswIndex index;
    private final VectorValidator validator;
    private final OperationAuditor auditor;
    private final AtomicLong idGenerator;

    public VectorAddOperation(HnswIndex index) {
        this.index = index;
        this.validator = new VectorValidator();
        this.auditor = new OperationAuditor();
        this.idGenerator = new AtomicLong(1);
    }

    /**
     * 添加向量(自动生成ID)
     */
    public long add(Vector vector) {
        long operationId = auditor.startOperation("ADD", null);

        try {
            // 1. 输入验证
            validator.validate(vector);

            // 2. 生成唯一ID
            long id = idGenerator.getAndIncrement();

            // 3. 执行添加操作
            return executeAdd(id, vector, operationId);

        } catch (Exception e) {
            auditor.recordError(operationId, e);
            throw new VectorOperationException("Failed to add vector", e);
        }
    }

    /**
     * 添加向量(指定ID)
     */
    public void add(long id, Vector vector) {
        long operationId = auditor.startOperation("ADD", id);

        try {
            // 1. 输入验证
            validator.validate(vector);
            validator.validateId(id);

            // 2. 检查ID冲突
            if (index.contains(id)) {
                throw new DuplicateIdException("Vector with id " + id + " already exists");
            }

            // 3. 执行添加操作
            executeAdd(id, vector, operationId);

        } catch (Exception e) {
            auditor.recordError(operationId, e);
            throw new VectorOperationException("Failed to add vector with id " + id, e);
        }
    }

    /**
     * 执行添加操作的核心逻辑
     */
    private long executeAdd(long id, Vector vector, long operationId) {
        // 记录操作开始
        long startTime = System.nanoTime();

        try {
            // 添加到索引
            index.add(id, vector);

            // 记录成功
            long duration = System.nanoTime() - startTime;
            auditor.recordSuccess(operationId, duration);

            logger.debug("Successfully added vector with id: {}, duration: {}ms", 
                        id, duration / 1_000_000);

            return id;

        } catch (Exception e) {
            // 回滚操作(如果需要)
            rollbackAdd(id);
            throw e;
        }
    }

    /**
     * 回滚添加操作
     */
    private void rollbackAdd(long id) {
        try {
            index.remove(id);
            logger.debug("Rolled back add operation for id: {}", id);
        } catch (Exception e) {
            logger.warn("Failed to rollback add operation for id: {}", id, e);
        }
    }
}

8.2.2 批量添加优化

代码语言:javascript
代码运行次数:0
运行
复制
/**
 * 批量添加操作优化实现
 */
public class BatchAddOperation {
    private final HnswIndex index;
    private final int batchSize;
    private final ExecutorService executorService;

    public BatchAddOperation(HnswIndex index, int batchSize) {
        this.index = index;
        this.batchSize = batchSize;
        this.executorService = ForkJoinPool.commonPool();
    }

    /**
     * 批量添加向量(并行优化)
     */
    public List<Long> addBatch(List<Vector> vectors) {
        if (vectors.isEmpty()) {
            return Collections.emptyList();
        }

        List<Long> resultIds = new ArrayList<>(vectors.size());
        List<CompletableFuture<Long>> futures = new ArrayList<>();

        // 分批并行处理
        for (int i = 0; i < vectors.size(); i += batchSize) {
            int endIndex = Math.min(i + batchSize, vectors.size());
            List<Vector> batch = vectors.subList(i, endIndex);

            CompletableFuture<List<Long>> batchFuture = CompletableFuture
                .supplyAsync(() -> processBatch(batch), executorService);

            // 收集每个批次的结果
            for (int j = 0; j < batch.size(); j++) {
                final int batchIndex = j;
                CompletableFuture<Long> itemFuture = batchFuture
                    .thenApply(batchResults -> batchResults.get(batchIndex));
                futures.add(itemFuture);
            }
        }

        // 等待所有操作完成
        for (CompletableFuture<Long> future : futures) {
            try {
                resultIds.add(future.get());
            } catch (Exception e) {
                throw new RuntimeException("Batch add operation failed", e);
            }
        }

        return resultIds;
    }

    /**
     * 处理单个批次
     */
    private List<Long> processBatch(List<Vector> batch) {
        List<Long> batchIds = new ArrayList<>();

        // 使用事务确保批次的原子性
        try (Transaction tx = index.beginTransaction()) {
            for (Vector vector : batch) {
                long id = index.add(vector);
                batchIds.add(id);
            }
            tx.commit();
        } catch (Exception e) {
            // 批次失败时的处理
            logger.error("Batch processing failed, rolling back", e);
            throw new RuntimeException("Batch add failed", e);
        }

        return batchIds;
    }

    /**
     * 批量添加带预分配ID的向量
     */
    public void addBatch(Map<Long, Vector> vectors) {
        if (vectors.isEmpty()) {
            return;
        }

        // 验证ID唯一性
        validateUniqueIds(vectors.keySet());

        // 分批处理
        List<Map.Entry<Long, Vector>> entries = new ArrayList<>(vectors.entrySet());
        List<CompletableFuture<Void>> futures = new ArrayList<>();

        for (int i = 0; i < entries.size(); i += batchSize) {
            int endIndex = Math.min(i + batchSize, entries.size());
            List<Map.Entry<Long, Vector>> batch = entries.subList(i, endIndex);

            CompletableFuture<Void> future = CompletableFuture
                .runAsync(() -> processBatchWithIds(batch), executorService);
            futures.add(future);
        }

        // 等待所有批次完成
        CompletableFuture.allOf(futures.toArray(new CompletableFuture[0])).join();
    }

    /**
     * 处理带ID的批次
     */
    private void processBatchWithIds(List<Map.Entry<Long, Vector>> batch) {
        try (Transaction tx = index.beginTransaction()) {
            for (Map.Entry<Long, Vector> entry : batch) {
                index.add(entry.getKey(), entry.getValue());
            }
            tx.commit();
        }
    }

    /**
     * 验证ID唯一性
     */
    private void validateUniqueIds(Set<Long> ids) {
        for (Long id : ids) {
            if (index.contains(id)) {
                throw new DuplicateIdException("Vector with id " + id + " already exists");
            }
        }
    }
}

8.3 查询操作的多种模式

8.3.1 基础查询实现

代码语言:javascript
代码运行次数:0
运行
复制
/**
 * 向量查询操作实现
 */
public class VectorQueryOperation {
    private final HnswIndex index;
    private final QueryCache queryCache;
    private final QueryOptimizer optimizer;

    public VectorQueryOperation(HnswIndex index) {
        this.index = index;
        this.queryCache = new QueryCache(1000); // 缓存1000个查询结果
        this.optimizer = new QueryOptimizer();
    }

    /**
     * 根据ID获取向量
     */
    public Optional<Vector> get(long id) {
        try {
            HnswNode node = index.getNode(id);
            return node != null ? Optional.of(node.getVector()) : Optional.empty();
        } catch (Exception e) {
            logger.error("Failed to get vector with id: {}", id, e);
            return Optional.empty();
        }
    }

    /**
     * 批量获取向量
     */
    public Map<Long, Vector> getBatch(List<Long> ids) {
        Map<Long, Vector> result = new HashMap<>();

        // 并行获取向量
        ids.parallelStream().forEach(id -> {
            Optional<Vector> vector = get(id);
            if (vector.isPresent()) {
                synchronized (result) {
                    result.put(id, vector.get());
                }
            }
        });

        return result;
    }

    /**
     * 基础相似性搜索
     */
    public List<SearchResult> search(Vector query, int k) {
        return search(query, k, SearchOptions.defaultOptions());
    }

    /**
     * 高级搜索(带选项)
     */
    public List<SearchResult> search(Vector query, int k, SearchOptions options) {
        // 生成查询缓存键
        String cacheKey = generateCacheKey(query, k, options);

        // 检查缓存
        if (options.isEnableCache()) {
            List<SearchResult> cachedResult = queryCache.get(cacheKey);
            if (cachedResult != null) {
                return cachedResult;
            }
        }

        // 优化查询参数
        SearchParameters params = optimizer.optimize(query, k, options, index);

        // 执行搜索
        List<SearchResult> results = executeSearch(query, k, params, options);

        // 缓存结果
        if (options.isEnableCache() && results != null) {
            queryCache.put(cacheKey, results);
        }

        return results;
    }

    /**
     * 执行搜索的核心逻辑
     */
    private List<SearchResult> executeSearch(Vector query, int k, 
                                           SearchParameters params, SearchOptions options) {
        long startTime = System.nanoTime();

        try {
            // 根据选项选择搜索策略
            List<SearchResult> results;

            if (options.isExactSearch()) {
                results = index.exactSearch(query, k);
            } else {
                results = index.search(query, k, params.getEf());
            }

            // 后处理
            results = postProcessResults(results, options);

            long duration = System.nanoTime() - startTime;
            logger.debug("Search completed in {}ms, returned {} results", 
                        duration / 1_000_000, results.size());

            return results;

        } catch (Exception e) {
            logger.error("Search operation failed", e);
            throw new VectorOperationException("Search failed", e);
        }
    }

    /**
     * 结果后处理
     */
    private List<SearchResult> postProcessResults(List<SearchResult> results, SearchOptions options) {
        // 距离阈值过滤
        if (options.getMaxDistance() > 0) {
            results = results.stream()
                .filter(r -> r.getDistance() <= options.getMaxDistance())
                .collect(Collectors.toList());
        }

        // ID过滤
        if (options.getExcludeIds() != null && !options.getExcludeIds().isEmpty()) {
            Set<Long> excludeSet = new HashSet<>(options.getExcludeIds());
            results = results.stream()
                .filter(r -> !excludeSet.contains(r.getId()))
                .collect(Collectors.toList());
        }

        // 结果去重
        if (options.isDeduplication()) {
            results = deduplicateResults(results);
        }

        return results;
    }

    /**
     * 范围搜索实现
     */
    public List<SearchResult> searchWithinDistance(Vector query, float maxDistance) {
        SearchOptions options = SearchOptions.builder()
            .maxDistance(maxDistance)
            .enableCache(false) // 范围搜索通常不缓存
            .build();

        // 使用较大的k值进行搜索,然后按距离过滤
        int k = Math.min(1000, (int) index.size());
        List<SearchResult> results = search(query, k, options);

        return results.stream()
            .filter(r -> r.getDistance() <= maxDistance)
            .collect(Collectors.toList());
    }
}

8.3.2 查询选项和缓存

代码语言:javascript
代码运行次数:0
运行
复制
/**
 * 搜索选项配置
 */
public class SearchOptions {
    private boolean exactSearch = false;
    private boolean enableCache = true;
    private boolean deduplication = false;
    private float maxDistance = -1;
    private List<Long> excludeIds = null;
    private Map<String, Object> customParams = new HashMap<>();

    // 建造者模式
    public static Builder builder() {
        return new Builder();
    }

    public static SearchOptions defaultOptions() {
        return new SearchOptions();
    }

    public static class Builder {
        private SearchOptions options = new SearchOptions();

        public Builder exactSearch(boolean exact) {
            options.exactSearch = exact;
            return this;
        }

        public Builder enableCache(boolean enable) {
            options.enableCache = enable;
            return this;
        }

        public Builder deduplication(boolean enable) {
            options.deduplication = enable;
            return this;
        }

        public Builder maxDistance(float distance) {
            options.maxDistance = distance;
            return this;
        }

        public Builder excludeIds(List<Long> ids) {
            options.excludeIds = ids;
            return this;
        }

        public Builder customParam(String key, Object value) {
            options.customParams.put(key, value);
            return this;
        }

        public SearchOptions build() {
            return options;
        }
    }

    // Getters
    public boolean isExactSearch() { return exactSearch; }
    public boolean isEnableCache() { return enableCache; }
    public boolean isDeduplication() { return deduplication; }
    public float getMaxDistance() { return maxDistance; }
    public List<Long> getExcludeIds() { return excludeIds; }
    public Map<String, Object> getCustomParams() { return customParams; }
}

/**
 * 查询结果缓存
 */
public class QueryCache {
    private final Map<String, CacheEntry> cache = new ConcurrentHashMap<>();
    private final int maxSize;
    private final long ttlMs;

    public QueryCache(int maxSize) {
        this(maxSize, 300_000); // 默认5分钟TTL
    }

    public QueryCache(int maxSize, long ttlMs) {
        this.maxSize = maxSize;
        this.ttlMs = ttlMs;
    }

    public List<SearchResult> get(String key) {
        CacheEntry entry = cache.get(key);
        if (entry == null || entry.isExpired()) {
            cache.remove(key);
            return null;
        }

        entry.updateAccessTime();
        return entry.getResults();
    }

    public void put(String key, List<SearchResult> results) {
        // 缓存大小控制
        if (cache.size() >= maxSize) {
            evictLRU();
        }

        cache.put(key, new CacheEntry(results, System.currentTimeMillis()));
    }

    /**
     * LRU驱逐策略
     */
    private void evictLRU() {
        String lruKey = null;
        long lruTime = Long.MAX_VALUE;

        for (Map.Entry<String, CacheEntry> entry : cache.entrySet()) {
            if (entry.getValue().getLastAccessTime() < lruTime) {
                lruTime = entry.getValue().getLastAccessTime();
                lruKey = entry.getKey();
            }
        }

        if (lruKey != null) {
            cache.remove(lruKey);
        }
    }

    /**
     * 缓存条目
     */
    private class CacheEntry {
        private final List<SearchResult> results;
        private final long createTime;
        private volatile long lastAccessTime;

        public CacheEntry(List<SearchResult> results, long createTime) {
            this.results = new ArrayList<>(results); // 防御性拷贝
            this.createTime = createTime;
            this.lastAccessTime = createTime;
        }

        public boolean isExpired() {
            return System.currentTimeMillis() - createTime > ttlMs;
        }

        public void updateAccessTime() {
            this.lastAccessTime = System.currentTimeMillis();
        }

        public List<SearchResult> getResults() { return results; }
        public long getLastAccessTime() { return lastAccessTime; }
    }
}

8.4 更新和删除策略

8.4.1 向量更新实现

代码语言:javascript
代码运行次数:0
运行
复制
/**
 * 向量更新操作实现
 */
public class VectorUpdateOperation {
    private final HnswIndex index;
    private final OperationAuditor auditor;
    private final UpdateStrategy strategy;

    public VectorUpdateOperation(HnswIndex index, UpdateStrategy strategy) {
        this.index = index;
        this.auditor = new OperationAuditor();
        this.strategy = strategy;
    }

    /**
     * 更新单个向量
     */
    public boolean update(long id, Vector newVector) {
        long operationId = auditor.startOperation("UPDATE", id);

        try {
            // 1. 验证输入
            if (!index.contains(id)) {
                auditor.recordError(operationId, new NotFoundException("Vector not found: " + id));
                return false;
            }

            // 2. 获取原向量(用于回滚)
            Vector oldVector = index.getVector(id);

            // 3. 执行更新策略
            boolean success = strategy.update(index, id, oldVector, newVector);

            if (success) {
                auditor.recordSuccess(operationId, 0);

                // 4. 清理相关缓存
                invalidateRelatedCaches(id);
            } else {
                auditor.recordError(operationId, new UpdateFailedException("Update failed for id: " + id));
            }

            return success;

        } catch (Exception e) {
            auditor.recordError(operationId, e);
            throw new VectorOperationException("Failed to update vector " + id, e);
        }
    }

    /**
     * 批量更新向量
     */
    public Map<Long, Boolean> updateBatch(Map<Long, Vector> vectors) {
        Map<Long, Boolean> results = new ConcurrentHashMap<>();

        // 并行执行更新
        vectors.entrySet().parallelStream().forEach(entry -> {
            boolean success = update(entry.getKey(), entry.getValue());
            results.put(entry.getKey(), success);
        });

        return results;
    }

    /**
     * 失效相关缓存
     */
    private void invalidateRelatedCaches(long id) {
        // 清理查询缓存中包含该向量的结果
        // 这是一个简化实现,实际中可能需要更复杂的缓存失效策略
    }
}

/**
 * 更新策略接口
 */
public interface UpdateStrategy {
    boolean update(HnswIndex index, long id, Vector oldVector, Vector newVector);
}

/**
 * 删除后重新添加的更新策略
 */
public class DeleteAndAddUpdateStrategy implements UpdateStrategy {

    @Override
    public boolean update(HnswIndex index, long id, Vector oldVector, Vector newVector) {
        try (Transaction tx = index.beginTransaction()) {
            // 1. 删除原向量
            boolean deleted = index.remove(id);
            if (!deleted) {
                tx.rollback();
                return false;
            }

            // 2. 添加新向量
            index.add(id, newVector);

            tx.commit();
            return true;

        } catch (Exception e) {
            logger.error("Delete-and-add update failed for id: {}", id, e);
            return false;
        }
    }
}

/**
 * 原地更新策略(如果索引支持)
 */
public class InPlaceUpdateStrategy implements UpdateStrategy {

    @Override
    public boolean update(HnswIndex index, long id, Vector oldVector, Vector newVector) {
        try {
            // 直接更新节点的向量数据
            HnswNode node = index.getNode(id);
            if (node == null) {
                return false;
            }

            // 更新向量数据
            node.updateVector(newVector);

            // 如果向量变化很大,可能需要重新建立连接
            if (shouldReconnect(oldVector, newVector)) {
                reconnectNode(index, node);
            }

            return true;

        } catch (Exception e) {
            logger.error("In-place update failed for id: {}", id, e);
            return false;
        }
    }

    private boolean shouldReconnect(Vector oldVector, Vector newVector) {
        // 计算向量变化程度
        float similarity = cosineSimilarity(oldVector, newVector);
        return similarity < 0.8; // 如果相似度低于0.8,重新连接
    }

    private void reconnectNode(HnswIndex index, HnswNode node) {
        // 重新计算并建立连接
        // 这是一个复杂的操作,需要考虑图的一致性
    }
}

8.4.2 向量删除实现

代码语言:javascript
代码运行次数:0
运行
复制
/**
 * 向量删除操作实现
 */
public class VectorDeleteOperation {
    private final HnswIndex index;
    private final OperationAuditor auditor;
    private final DeletionStrategy strategy;

    public VectorDeleteOperation(HnswIndex index, DeletionStrategy strategy) {
        this.index = index;
        this.auditor = new OperationAuditor();
        this.strategy = strategy;
    }

    /**
     * 删除单个向量
     */
    public boolean delete(long id) {
        long operationId = auditor.startOperation("DELETE", id);

        try {
            // 1. 检查向量是否存在
            if (!index.contains(id)) {
                auditor.recordError(operationId, new NotFoundException("Vector not found: " + id));
                return false;
            }

            // 2. 执行删除策略
            boolean success = strategy.delete(index, id);

            if (success) {
                auditor.recordSuccess(operationId, 0);

                // 3. 清理相关缓存和引用
                cleanupAfterDeletion(id);
            }

            return success;

        } catch (Exception e) {
            auditor.recordError(operationId, e);
            throw new VectorOperationException("Failed to delete vector " + id, e);
        }
    }

    /**
     * 批量删除向量
     */
    public Map<Long, Boolean> deleteBatch(List<Long> ids) {
        Map<Long, Boolean> results = new ConcurrentHashMap<>();

        // 验证所有ID是否存在
        List<Long> existingIds = ids.stream()
            .filter(index::contains)
            .collect(Collectors.toList());

        // 并行删除
        existingIds.parallelStream().forEach(id -> {
            boolean success = delete(id);
            results.put(id, success);
        });

        // 标记不存在的ID
        ids.stream()
            .filter(id -> !existingIds.contains(id))
            .forEach(id -> results.put(id, false));

        return results;
    }

    /**
     * 删除后清理工作
     */
    private void cleanupAfterDeletion(long id) {
        // 清理查询缓存
        // 更新统计信息
        // 其他清理工作
    }
}

/**
 * 删除策略接口
 */
public interface DeletionStrategy {
    boolean delete(HnswIndex index, long id);
}

/**
 * 立即删除策略
 */
public class ImmediateDeletionStrategy implements DeletionStrategy {

    @Override
    public boolean delete(HnswIndex index, long id) {
        try {
            return index.remove(id);
        } catch (Exception e) {
            logger.error("Immediate deletion failed for id: {}", id, e);
            return false;
        }
    }
}

/**
 * 延迟删除策略(标记删除)
 */
public class LazyDeletionStrategy implements DeletionStrategy {
    private final Set<Long> deletedIds = ConcurrentHashMap.newKeySet();
    private final ScheduledExecutorService scheduler = 
        Executors.newSingleThreadScheduledExecutor();

    public LazyDeletionStrategy() {
        // 定期清理被标记删除的向量
        scheduler.scheduleWithFixedDelay(this::performActualDeletion, 
                                       60, 60, TimeUnit.SECONDS);
    }

    @Override
    public boolean delete(HnswIndex index, long id) {
        // 只是标记为删除,不立即从索引中移除
        deletedIds.add(id);
        return true;
    }

    /**
     * 执行实际的删除操作
     */
    private void performActualDeletion() {
        if (deletedIds.isEmpty()) {
            return;
        }

        Set<Long> toDelete = new HashSet<>(deletedIds);
        deletedIds.clear();

        for (Long id : toDelete) {
            try {
                index.remove(id);
            } catch (Exception e) {
                logger.warn("Failed to delete vector {}", id, e);
                // 删除失败的ID可以重新加入待删除集合
                deletedIds.add(id);
            }
        }
    }

    /**
     * 检查ID是否被标记删除
     */
    public boolean isDeleted(long id) {
        return deletedIds.contains(id);
    }
}

小结

本章详细介绍了向量数据库的完整CRUD操作实现:

  1. 操作架构
    • 统一的CRUD接口设计
    • 分层的操作架构
    • 完整的错误处理机制
  2. 添加操作
    • 单个和批量添加
    • 并发优化策略
    • ID管理和冲突处理
  3. 查询操作
    • 多种查询模式
    • 查询选项配置
    • 结果缓存优化
  4. 更新删除
    • 多种更新策略
    • 立即和延迟删除
    • 事务性操作保证

这些CRUD操作的实现为向量数据库提供了完整的数据管理能力,支持高并发、高性能的向量数据操作。


思考题:

  1. 如何设计一个高效的向量更新机制,既保证索引一致性又最小化性能影响?
  2. 在什么情况下应该选择延迟删除而不是立即删除?
  3. 如何实现查询结果的智能缓存失效策略?
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2025-07-29,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Coder建设 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 第八章:CRUD操作与数据管理
    • 8.1 完整CRUD操作设计
      • 8.1.1 CRUD操作概述
      • 8.1.2 统一操作接口
    • 8.2 添加操作的实现与优化
      • 8.2.1 单个向量添加
      • 8.2.2 批量添加优化
    • 8.3 查询操作的多种模式
      • 8.3.1 基础查询实现
      • 8.3.2 查询选项和缓存
    • 8.4 更新和删除策略
      • 8.4.1 向量更新实现
      • 8.4.2 向量删除实现
    • 小结
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档