首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >【HDU】2553 - N皇后问题(dfs)

【HDU】2553 - N皇后问题(dfs)

作者头像
FishWang
发布2025-08-27 09:28:11
发布2025-08-27 09:28:11
14100
代码可运行
举报
运行总次数:0
代码可运行

点击打开题目

N皇后问题

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 18337 Accepted Submission(s): 8295

Problem Description

在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上。 你的任务是,对于给定的N,求出有多少种合法的放置方法。

Input

共有若干行,每行一个正整数N≤10,表示棋盘和皇后的数量;如果N=0,表示结束。

Output

共有若干行,每行一个正整数,表示对应输入行的皇后的不同放置数量。

Sample Input

代码语言:javascript
代码运行次数:0
运行
复制
   1
8
5
0

Sample Output

代码语言:javascript
代码运行次数:0
运行
复制
   1
92
10

Author

cgf

Source

2008 HZNU Programming Contest

要先dfs打表啊,输入后再进行dfs的话会超时的!

话说:如果数很大的话, 就算先打表也会超时,完全可以打个表,然后手写一个表,就是在常数复杂度下出结果了。(好无耻的方法=。=)

代码如下:

代码语言:javascript
代码运行次数:0
运行
复制
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define CLR(a,b) memset(a,b,sizeof(a))
bool vis[3][44];		//0为列,1为主对角线,2为副对角线 
int n;
int ans[14];
void dfs(int x,int y,int ant)
{
	if (x > n)
		return;
	if (ant > x)
		return;
	if (ant == n)
	{
		ans[n]++;
		return;
	}
	for (int i = 1 ; i <= n ; i++)
	{
		if (vis[0][i] || vis[2][x+1+i] || vis[1][i-x-1+10])
			continue;
		vis[0][i] = vis[2][x+1+i] = vis[1][i-x-1+10] = true;
		dfs(x+1 , i , ant+1);
		vis[0][i] = vis[2][x+1+i] = vis[1][i-x-1+10] = false;
	}
}
int main()
{
	CLR(vis,false);
	for (n = 1 ; n <= 10 ; n++)
	{
		ans[n] = 0;
		for (int i = 1 ; i <= n ; i++)
		{
			vis[0][i] = vis[2][1+i] = vis[1][i-1+10] = true;
			dfs(1,i,1);
			vis[0][i] = vis[2][1+i] = vis[1][i-1+10] = false;
		}
	}
	while (~scanf ("%d",&n) && n)
		printf ("%d\n",ans[n]);
	return 0;
}
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2025-08-26,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • N皇后问题
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档