首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >时序数据基础:时序数据的十大特征

时序数据基础:时序数据的十大特征

原创
作者头像
涛思数据TDengine
发布2025-09-28 10:16:07
发布2025-09-28 10:16:07
1590
举报

相对于普通的互联网的应用数据,时序数据有着很多明显的特征。涛思数据的创始人陶建辉先生早在 2017 年,就对此进行了充分地归纳分析,总结了时序数据本身以及时序数据应用的十大特征:

  1. 数据是时序的,一定带有时间戳:联网的设备按照设定的周期,或受外部的事件触发,源源不断地产生数据,每条记录都是在一个时间点产生的,其时间戳必须记录,否则记录的值没有任何意义。
  2. 数据是结构化的:物联网、工业设备产生的数据以及证券交易数据往往是结构化的,而且绝大多数都是数值型的,比如智能电表采集的电流、电压就可以用 4 字节的标准的浮点数来表示。
  3. 一个数据采集点就是一个数据流:一个设备采集的数据、以及一支股票的交易数据,与另外一个设备采集的数据或股票是完全独立的。一台设备的数据一定是这台设备产生的,不可能是人工或其他设备产生的。一台设备产生的数据或一支股票的交易数据只有一个生产者,也就是说数据源是唯一的。
  4. 数据较少有更新删除操作:对于一个典型的信息化或互联网应用,记录可能是经常需要修改或删除的。但对于设备或交易产生的数据正常情况下不会去更新/删除。
  5. 数据不依赖于事务:在设备产生的数据中,具体的单条数据价值相对不高,数据的完整性和一致性并不像传统关系型数据库那样严格,大家关心的是趋势,所以不需要引入复杂的事务机制。
  6. 相对互联网应用,写多读少:对于互联网应用,一条数据记录,往往是一次写,很多次读。比如一条微博或一篇微信公共号文章,一次写,但有可能上百万人读。但工业、物联网设备产生的数据不一样,一般是计算、分析程序自动读,且次数不多,只有遇到事故、人们才会主动读取原始数据。
  7. 用户关注的是一段时间的趋势:对于一条银行交易记录,或者一条微博、微信,对于它的用户而言,每一条都很重要。但对于物联网、工业时序数据,每个数据点与数据点的变化并不大,大家关心的更多是一段时间,比如过去五分钟、一小时数据变化的趋势,不会只针对一个时间点进行。
  8. 数据是有保留期限的:采集的数据一般都有基于时长的保留策略,比如仅仅保留一天、一周、一个月、一年甚至更长时间,该类数据的价值往往是由时间段决定的,因此对于不在重要时间段内的数据,都是可以被视为过期数据整块删除的。
  9. 需要实时分析计算操作:对于大部分互联网大数据应用,更多的是离线分析,即使有实时分析,但要求并不高。比如用户画像、可以积累一定的用户行为数据后进行,早一天晚一天画不会特别影响结果。但是对于工业、物联网的平台应用以及交易系统,对数据的实时计算要求就往往很高,因为需要根据计算结果进行实时报警、监控,从而避免事故的发生、决策时机的错过。
  10. 流量平稳、可预测:给定工业、物联网设备数量、数据采集频次,就可以较为准确的估算出所需要的带宽、流量、存储等数字,以及每天新生成的数据大小。而不是像电商,在双 11 期间,淘宝、天猫、京东等流量是几十倍的涨幅。也不像 12306 网站,春节期间,网站流量是几十倍的增长。

上述的特征使时序数据的处理具有着独特的需求和挑战。但是反过来说,对于一个高效的时序数据处理平台,它也必然充分利用这十大特征来提升它的处理能力。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档