张量PCA如同高维世界的雕塑家:
传统PCA像处理书页的平面扫描,张量PCA则是全息投影,保持书本的立体结构。
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.indexing.NDArrayIndex;
public class TensorPCA {
// Tucker分解实现三维张量PCA
public static TuckerResult tuckerDecompose(INDArray tensor, int[] ranks) {
INDArray core = tensor.dup();
INDArray[] factors = new INDArray[3];
// 各模态矩阵分解
for(int mode=0; mode<3; mode++) {
INDArray unfolded = unfold(tensor, mode);
INDArray U = pca(unfolded, ranks[mode]);
factors[mode] = U;
core = modeProduct(core, U.transpose(), mode);
}
return new TuckerResult(core, factors);
}
// 张量展开
private static INDArray unfold(INDArray tensor, int mode) {
int[] shape = tensor.shape();
return tensor.permute(mode, (mode+1)%3, (mode+2)%3)
.reshape(shape[mode], shape[(mode+1)%3]*shape[(mode+2)%3]);
}
// 简化PCA
private static INDArray pca(INDArray matrix, int k) {
INDArray cov = matrix.transpose().mmul(matrix);
INDArray[] eigen = Eigen.eigenvectors(cov);
return eigen[0].get(NDArrayIndex.interval(0, eigen[0].rows()),
NDArrayIndex.interval(0, k));
}
public static void main(String[] args) {
// 示例:3x3x3张量
INDArray tensor = Nd4j.rand(3,3,3);
TuckerResult result = tuckerDecompose(tensor, new int[]{2,2,2});
System.out.println("核心张量:\n" + result.core);
}
}
指标 | 数值 | 说明 |
---|---|---|
时间复杂度 | O(Πd_i * Πr_j) | d_i:各维度长度 r_j:核心维度 |
空间复杂度 | O(Πd_i + Σd_i*r_i) | 原张量+核心张量+因子矩阵 |
优势 | 保留多维结构 | 避免矩阵展开的信息损失 |
关键突破:
典型案例:
新手必练:
import tensorly as tl
from tensorly.decomposition import tucker
core, factors = tucker(tensor, ranks=[2,2,2])
高手进阶:
// GPU加速核心代码(示例)
public class GPUTensorPCA {
static {
JCuda.setExceptionsEnabled(true);
cuInit(0);
}
public void gpuTucker(INDArray tensor) {
// 将数据拷贝到GPU显存
Pointer deviceTensor = copyToDevice(tensor);
// 调用CUDA核函数
cuLaunchKernel(kernelFunc,
gridX, gridY, gridZ,
blockX, blockY, blockZ,
sharedMemBytes, stream,
kernelParams, null);
// 取回结果
INDArray result = copyFromDevice(deviceTensor);
}
}
张量PCA教会我们:
当你能在TB级的城市多维数据中发现交通拥堵的时空传播规律时,说明真正掌握了高维认知的密钥——这不仅需要算法能力,更需要将数学抽象转化为现实洞察的想象力。记住:张量不是数据的牢笼,而是理解复杂系统的全息地图。