Loading [MathJax]/jax/output/CommonHTML/config.js
腾讯云
开发者社区
文档
建议反馈
控制台
登录/注册
首页
学习
活动
专区
圈层
工具
MCP广场
文章/答案/技术大牛
搜索
搜索
关闭
发布
首页
学习
活动
专区
圈层
工具
MCP广场
返回腾讯云官网
怎样用matlab实现 二阶BP神经网络?二阶BP神经网络该怎么编程?
写回答
关注问题
社区首页
>
问答首页
>
怎样用matlab实现 二阶BP神经网络?二阶BP神经网络该怎么编程?
问
怎样用matlab实现 二阶BP神经网络?二阶BP神经网络该怎么编程?
提问于 2019-03-25 07:03:22
回答 0
关注 0
查看 293
怎样用matlab实现 二阶BP神经网络?二阶BP神经网络该怎么编程?
数据万象
人脸识别
matlab
神经网络
图片标签
广告
618特惠 4核4G3M云服务器
新用户低至38元/年
写回答
关注问题
分享
举报
回答
成为首答用户。去
写回答
相关文章
bp神经网络及matlab实现_bp神经网络应用实例Matlab
神经网络
编程算法
matlab
BP(Back-propagation,反向传播)神经网络是最传统的神经网络。当下的各种神经网络的模型都可以看做是BP神经网络的变种(虽然变动很大…)。 这东西是干什么用的呢? 我们在现实中要处理的一切问题映射到数学上只分为两类,可归纳的问题与不可归纳的问题。首先什么是不可归纳的问题,举个例子,你不能用一套完美的数学公式去表达所有的质数 , 因为目前的研究表明,还没有什么方法是能够表达质数的,也就是说,质数的出现,本身不具备严格的数学规律,所以无法归纳。 但是我们人眼看到猫猫狗狗的图片就很容易分辨哪个是猫,哪个是狗。这说明在猫和狗之间,确实存在着不同,虽然你很难说清楚它们的不同到底是什么,但是可以知道,这背后是可以通过一套数学表达来完成的,只是很复杂而已。 大部分AI技术的目的就是通过拟合这个复杂的数学表达,建立一个解决客观问题的数学函数。BP神经网络的作用也是如此。 BP神经网络这个名字由两部分组成,BP(反向传播)和神经网络。神经网络是说这种算法是模拟大脑神经元的工作机理,并有多层神经元构成的网络。 而这个名字的精髓在BP上,即反向传播。反向传播是什么意思呢。这里举个例子来说明。 比如你的朋友买了一双鞋,让你猜价格。 你第一次猜99块钱,他说猜低了。 你第二次猜101块钱,他说猜高了。 你第三次猜100块钱,他说猜对了。 你猜价格的这个过程是利用随机的数据给出一个预测值,这是一个正向传播。 而你的朋友将你的预测值与真实值进行对比,然后给出一个评价,这个过程是一个反向传播。 神经网络也是类似的过程,通过对网络的超参数进行随机配置,得到一个预测值。这是一个正向传播的过程。而后计算出预测值与真实值的差距,根据这个差距相应的调整参数,这是一个反向传播的过程。通过多次迭代,循环往复,我们就能计算出一组合适的参数,得到的网络模型就能拟合一个我们未知的复杂函数。 我们来看这个BP神经网络的示意图
全栈程序员站长
2022/10/01
1.8K
0
【数学建模】之Matlab实现BP神经网络
神经网络
编程算法
trainning:用来训练的数据。 validtion:测量网络泛化的数据(泛化停止改善时停止训练) testing:用来测试神经网络的数据。
树枝990
2020/08/20
3.8K
0
Python BP神经网络实现
对象存储
编程算法
神经网络
缓存
python
人工神经网络模型种类很多,其中根据网络内数据流向进行分类可以分为前馈网络、反馈网络和自组织网络。
用户7886150
2020/12/28
1.4K
0
神经网络学习笔记1——BP神经网络原理到编程实现(matlab,python)[通俗易懂]
神经网络
matlab
python
腾讯云测试服务
不好意思拖了这么久才整理,弄完考试的事情就在研究老师给安排的新任务,一时间还有点摸不到头脑,就直接把百度网盘链接放在视频下面了但是最近才发现那个链接发出来了看不到,所以现在有时间了就来重新整理一下!
全栈程序员站长
2022/09/09
1.5K
0
BP神经网络
神经网络
机器学习
人工智能
BP(Back Propagation)神经网络是1986年由以Rumelhart和McCelland为首的科学家小组提出的,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存储大量的输入/输出因施工和关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。
企鹅号小编
2018/01/29
2.7K
0
BP神经网络预测(人口)程序(matlab)
matlab
误差直方图
全栈程序员站长
2022/10/04
925
0
BP神经网络
神经网络
BP(Back Propagation)神经网络是1986年由以Rumelhart和McCelland为首的科学家小组提出的,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存储大量的输入/输出因施工和关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。
瓜大三哥
2018/02/26
1.4K
0
bp神经网络应用实例(简述bp神经网络)
编程算法
神经网络
clear; clc; TestSamNum = 20; % 学习样本数量 ForcastSamNum = 2; % 预测样本数量 HiddenUnitNum=8; % 隐含层 InDim = 3; % 输入层 OutDim = 2; % 输出层 % 原始数据 % 人数(单位:万人) sqrs = [20.55 22.44 25.37 27.13 29.45 30.10 30.96 34.06 36.42 38.09 39.13 39.99 ... 41.93 44.59 47.30 52.89 55.73 56.76 59.17 60.63]; % 机动车数(单位:万辆) sqjdcs = [0.6 0.75 0.85 0.9 1.05 1.35 1.45 1.6 1.7 1.85 2.15 2.2 2.25 2.35 2.5 2.6... 2.7 2.85 2.95 3.1]; % 公路面积(单位:万平方公里) sqglmj = [0.09 0.11 0.11 0.14 0.20 0.23 0.23 0.32 0.32 0.34 0.36 0.36 0.38 0.49 ... 0.56 0.59 0.59 0.67 0.69 0.79]; % 公路客运量(单位:万人) glkyl = [5126 6217 7730 9145 10460 11387 12353 15750 18304 19836 21024 19490 20433 ... 22598 25107 33442 36836 40548 42927 43462]; % 公路货运量(单位:万吨) glhyl = [1237 1379 1385 1399 1663 1714 1834 4322 8132 8936 11099 11203 10524 11115 ... 13320 16762 18673 20724 20803 21804]; p = [sqrs; sqjdcs; sqglmj]; % 输入数据矩阵 t = [glkyl; glhyl]; % 目标数据矩阵 [SamIn, minp, maxp, tn, mint, maxt] = premnmx(p, t); % 原始样本对(输入和输出)初始化 SamOut = tn; % 输出样本 MaxEpochs = 50000; % 最大训练次数 lr = 0.05; % 学习率 E0 = 1e-3; % 目标误差 rng('default'); W1 = rand(HiddenUnitNum, InDim); % 初始化输入层与隐含层之间的权值 B1 = rand(HiddenUnitNum, 1); % 初始化输入层与隐含层之间的阈值 W2 = rand(OutDim, HiddenUnitNum); % 初始化输出层与隐含层之间的权值 B2 = rand(OutDim, 1); % 初始化输出层与隐含层之间的阈值 ErrHistory = zeros(MaxEpochs, 1); for i = 1 : MaxEpochs HiddenOut = logsig(W1*SamIn + repmat(B1, 1, TestSamNum)); % 隐含层网络输出 NetworkOut = W2*HiddenOut + repmat(B2, 1, TestSamNum); % 输出层网络输出 Error = SamOut - NetworkOut; % 实际输出与网络输出之差 SSE = sumsqr(Error); % 能量函数(误差平方和) ErrHistory(i) = SSE; if SSE < E0 break; end % 以下六行是BP网络最核心的程序 % 权值(阈值)依据能量函数负梯度下降原理所作的每一步动态调整量 Delta2 = Error; Delta1 = W2' * Delta2 .* HiddenOut .* (1 - HiddenOut); dW2 = Delta2 * HiddenOut'; dB2 = Delta2 * ones(TestSamNum, 1); dW1 = Delta1 * SamIn'; dB1 = Delta1 * ones(TestSamNum, 1); % 对输出层与隐含层之间的权值和阈值进行修正 W2 = W2 + lr*dW2; B2 = B2 + lr*dB2; % 对输入层与隐含层之间的权值和阈值进行修正 W1 = W1 + lr*dW1; B1 = B1 + lr*dB1; end HiddenOut = logsig(W1*SamIn + repmat(B1, 1, TestSamNum)); % 隐含层输出最终结果 NetworkOut = W2*HiddenOut + repmat(B2, 1, TestSamNum); % 输
全栈程序员站长
2022/07/31
1.8K
0
BP神经网络原理及实现
神经网络
经典的BP神经网络通常由三层组成: 输入层, 隐含层与输出层.通常输入层神经元的个数与特征数相关,输出层的个数与类别数相同, 隐含层的层数与神经元数均可以自定义.
全栈程序员站长
2022/09/13
1.2K
0
bp神经网络的设计方法_bp神经网络例子
编程算法
腾讯云测试服务
神经网络
机器学习
深度学习
如上图所示,我先对将地面划分为n个小区域,用发声装置分别在每一个小区域的中心点坐标处发声一次,每发声一次,就用四个麦克风记录下时间差,,只需要三个时间差即可,分别为
全栈程序员站长
2022/11/09
888
0
神经网络-BP神经网络
神经网络
编程算法
BP神经网络是一种通过误差反向传播算法进行误差校正的多层前馈神经网络,其最核心的特点就是:信号是前向传播,而误差是反向传播。前向传播过程中,输入信号经由输入层、隐藏层逐层处理,到输出层时,如果结果未到达期望要求,则进入反向传播过程,将误差信号原路返回,修改各层权重。
三猫
2021/03/04
1.8K
0
BP神经网络预测matlab代码讲解与实现步骤
神经网络
https
网络安全
神经网络是机器学习中一种常见的数学模型,通过构建类似于大脑神经突触联接的结构,来进行信息处理。在应用神经网络的过程中,处理信息的单元一般分为三类:输入单元、输出单元和隐含单元。 顾名思义:输入单元接受外部给的信号与数据;输出单元实现系统处理结果的输出;隐含单元处在输入和输出单元之间,从网络系统外部是无法观测到隐含单元的结构的。除了上述三个处理信息的单元之外,神经元间的连接强度大小由权值等参数来决定。
全栈程序员站长
2022/08/31
2K
0
BP人工神经网络matlab工具箱_matlab神经网络控制
java
matlab
https
网络安全
figure, ploterrcorr(errors) %绘制误差的自相关情况(20lags)
全栈程序员站长
2022/10/03
506
0
BP 神经网络算法
神经网络
编程算法
https
html
x的值可能为[−∞,+∞],为了方便处理,需要将其压缩到一个合理的范围,还需 这样的激励函数,能够将刚才的区间压缩到[0,1]。
一个会写诗的程序员
2018/08/17
730
0
TensorFlow实现简单BP神经网络
神经网络
https
github
网络安全
git
这是自己学习tensorflow的基本操作后,实现的最简单的BP神经网络模型。数据集用的时之前在博文:利用BP神经网络对语音特征信号数据集进行分类中的语音信号数据集,在之前的文章忘记附上数据集,这次在博客中给出下载链接:语音信号数据集。不得不说TensorFlow的强大,运算速度快不说,精度比[利用BP神经网络对语音特征信号数据集进行分类(https://blog.csdn.net/qq_30091945/article/details/72596638)在手动实现的BP 神经网络的性能好多了。相关代码已上传github:https://github.com/Daipuwei/TensorFlow-BP-/tree/master
AI那点小事
2020/04/18
1.6K
0
BP神经网络的Matlab实现——人工智能算法
监督学习
编程算法
机器学习
深度学习
人工智能
这几天在各大媒体上接触到了人工智能机器学习,觉得很有意思,于是开始入门最简单的机器算法——神经网络训练算法(Neural Network Training);以前一直觉得机器学习很高深,到处是超高等数学、线性代数、数理统计。入坑发现确实是这样!但是呢由项目实例驱动的学习比起为考试不挂科为目的的学习更为高效、实用!在遗传算法、神经网络算法的学习入门之后觉得数学只要用心看没问题的(即使是蒙特卡洛和马尔科夫问题),但是呢需要把数学统计应用到程序中,来解决实际的问题这是两码事。主要呢还是需要动手打代码。下面呢是今天的机器学习之神经网络学习入门记录篇,希望帮助到同样入门采坑的哥们,一起进步!
全栈程序员站长
2022/06/29
1.6K
0
BP神经网络算法_bp神经网络算法流程图
神经网络
java
https
网络安全
html
1、前馈神经网络、反馈神经网络、BP网络等,他们之间的关系 前馈型神经网络: 取连续或离散变量,一般不考虑输出与输入在时间上的滞后效应,只表达输出与输入的映射关系;在此种神经网络中,各神经元从输入层开始,接收前一级输入,并输入到下一级,直至输出层。整个网络中无反馈,可用一个有向无环图表示。常见的前馈神经网络有感知机(Perceptrons)、BP(Back Propagation)网络、RBF(Radial Basis Function)网络等。 BP网络: BP网络是指连接权调整采用了反向传播(Back Propagation)学习算法的前馈网络。与感知器不同之处在于,BP网络的神经元变换函数采用了S形函数(Sigmoid函数),因此输出量是0~1之间的连续量,可实现从输入到输出的任意的非线性映射。 由上可知BP网络是通过BP算法来修正误差的前馈神经网络 反馈型神经网络: 取连续或离散变量,考虑输出与输入之间在时间上的延迟,需要用动态方程来描述系统的模型。
全栈程序员站长
2022/10/03
1.2K
0
BP神经网络基础算法
神经网络
编程算法
人工智能
BP算法是一种有监督式的学习算法,其主要思想是:输入学习样本,使用反向传播算法对网络的权值和偏差进行反复的调整训练,使输出的向量与期望向量尽可能地接近,当网络输出层的误差平方和小于指定的误差时训练完成,保存网络的权值和偏差。具体步骤如下: (1)初始化,随机给定各连接权[w],[v]及阀值θi,rt。 (2)由给定的输入输出模式对计算隐层、输出层各单元输出 bj=f(■wijai-θj) ct=f(■vjtbj-rt) 式中:bj为隐层第j个神经元实际输出;ct为输出层第t个神经元的实际输出;wij为输入层
用户2235302
2018/06/13
1.4K
0
手动搭建BP神经网络
神经网络
数据集采用著名的MNIST数据集,来自美国国家标准与技术研究所,由来自250个不同人手写的数字构成,其中50%是高中学生,50%来自人口普查局的工作人员。测试集也是同样比例的手写数字数据。
luxuantao
2021/02/24
782
0
BP神经网络算法改进文献_bp神经网络算法流程图
编程算法
serverless
java
https
1.方法设计 传统的BP算法改进主要有两类: – 启发式算法:如附加动量法,自适应算法 – 数值优化法:如共轭梯度法、牛顿迭代法、Levenberg-Marquardt算法
全栈程序员站长
2022/10/01
816
0
相似问题
相空间重构构建数据分布+bp神经网络算法训练函数F和遗传算法进行特征选取?
0
131
BP性别判别那个数据能发一下吗?
0
207
怎么用利用腾讯云训练自己的神经网络模型?
1
740
android.bp如何使用go根据不同项目来调用不同so库?
1
585
训练神经网络中途被kill?
1
1.7K
相关问答用户
请输入您想邀请的人
云存储
腾讯云 | 云存储
擅长5个领域
邀请回答
Jinqn
腾讯 | 高级工程师
擅长5个领域
邀请回答
galen
腾讯 | 高级工程师
擅长5个领域
邀请回答
腾讯云AI
腾讯 | 产品运营经理
擅长5个领域
邀请回答
DJ213
腾讯 | 服务生
邀请回答
活动推荐
自研大模型,业界领先。新用户1.2折起!
添加站长 进交流群
领取专属
10元无门槛券
AI混元助手
在线答疑
关注
腾讯云开发者公众号
洞察
腾讯核心技术
剖析业界实践案例
领券
问题归档
专栏文章
快讯文章归档
关键词归档
开发者手册归档
开发者手册 Section 归档
不再提示