我一直在用与教程不同的转换器模型在dataset上处理自己的实现,当我开始训练我的模型时,我已经得到了这个错误AttributeError: 'NoneType' object has no attribute 'dtype'
。我已经尝试调试了几个小时,然后我尝试了本教程的拥抱脸,因为它可以在这里找到https://huggingface.co/transformers/v3.2.0/custom_datasets.html。运行这个精确的代码,以便我能够识别我的错误,也会导致同样的错误。
!wget http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz
!tar -xf aclImdb_v1.tar.gz
from pathlib import Path
def read_imdb_split(split_dir):
split_dir = Path(split_dir)
texts = []
labels = []
for label_dir in ["pos", "neg"]:
for text_file in (split_dir/label_dir).iterdir():
texts.append(text_file.read_text())
labels.append(0 if label_dir is "neg" else 1)
return texts, labels
train_texts, train_labels = read_imdb_split('aclImdb/train')
test_texts, test_labels = read_imdb_split('aclImdb/test')
from sklearn.model_selection import train_test_split
train_texts, val_texts, train_labels, val_labels = train_test_split(train_texts, train_labels, test_size=.2)
from transformers import DistilBertTokenizerFast
tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased')
train_encodings = tokenizer(train_texts, truncation=True, padding=True)
val_encodings = tokenizer(val_texts, truncation=True, padding=True)
test_encodings = tokenizer(test_texts, truncation=True, padding=True)
import tensorflow as tf
train_dataset = tf.data.Dataset.from_tensor_slices((
dict(train_encodings),
train_labels
))
val_dataset = tf.data.Dataset.from_tensor_slices((
dict(val_encodings),
val_labels
))
test_dataset = tf.data.Dataset.from_tensor_slices((
dict(test_encodings),
test_labels
))
from transformers import TFDistilBertForSequenceClassification
model = TFDistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased')
optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=model.compute_loss) # can also use any keras loss fn
model.fit(train_dataset.shuffle(1000).batch(16), epochs=3, batch_size=16)
我的目标是在我自己的自定义数据集上执行多标签文本分类,不幸的是,由于隐私原因,我无法共享这些数据集。如果有人能指出这个实现有什么问题,我们将不胜感激。
发布于 2022-07-09 00:00:32
当您传递损失参数时,似乎出现了错误。
model.compile(optimizer=optimizer, loss=model.compute_loss) # can also use any keras loss fn
如果要使用模型的内置损失函数,则不需要传递损失参数。
通过将上述行更改为:
model.compile(optimizer=optimizer)
或者通过传递损失函数
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(optimizer=optimizer, loss=loss_fn)
变压器版本: 4.20.1
希望能帮上忙。
https://stackoverflow.com/questions/72912929
复制相似问题