首页
学习
活动
专区
圈层
工具
发布
社区首页 >问答首页 >caffe python手册

caffe python手册
EN

Stack Overflow用户
提问于 2016-04-06 18:19:35
回答 1查看 1.5K关注 0票数 2

我正在尝试实现SGD功能,在caffe中手动更新python中的权重,而不是使用solver.step()函数。目标是在执行solver.step()之后匹配权重更新,并手动更新权重。

设置如下:使用MNIST数据。将solver.prototxt中的随机种子设置为:random_seed: 52。确保momentum: 0.0和,base_lr: 0.01lr_policy: "fixed"。以上是为了,我可以简单地实现SGD更新方程(没有出动量,正则化等)。方程很简单: W_t+1 = W_t - mu * W_t_diff

以下是两项测试:

Test1:使用caffe的前进()和后向()来计算前向传播和后向传播。对于包含权重的每一层,我都这样做:

代码语言:javascript
复制
    for k in weight_layer_idx:
        solver.net.layers[k].blobs[0].diff[...] *= lr # weights
        solver.net.layers[k].blobs[1].diff[...] *= lr # biases

接下来,将权重/偏差更新为:

代码语言:javascript
复制
        solver.net.layers[k].blobs[0].data[...] -= solver.net.layers[k].blobs[0].diff
        solver.net.layers[k].blobs[1].data[...] -= solver.net.layers[k].blobs[1].diff

我运行了5次迭代。

Test2:运行caffe的solver.step(5)

现在,我期望两个测试在两次迭代之后产生完全相同的权重。

我在每次测试后保存权重值,并通过两个测试计算出权重向量之间的范数差,我发现它们并不精确。有什么地方我可能遗漏了什么吗?

以下是供参考的全部代码:

代码语言:javascript
复制
import caffe
caffe.set_device(0)
caffe.set_mode_gpu()
import numpy as np

niter = 5
solver = None
solver = caffe.SGDSolver('solver.prototxt')

# Automatic SGD: TEST2
solver.step(niter)
# save the weights to compare later
w_solver_step = copy(solver.net.layers[1].blobs[0].data.astype('float64'))
b_solver_step = copy(solver.net.layers[1].blobs[1].data.astype('float64'))

# Manual SGD: TEST1
solver = None
solver = caffe.SGDSolver('solver.prototxt')
lr = 0.01
momentum = 0.

# Get layer types
layer_types = []
for ll in solver.net.layers:
    layer_types.append(ll.type)

# Get the indices of layers that have weights in them
weight_layer_idx = [idx for idx,l in enumerate(layer_types) if 'Convolution' in l or 'InnerProduct' in l]

for it in range(1, niter+1):
    solver.net.forward()  # fprop
    solver.net.backward()  # bprop
    for k in weight_layer_idx:
        solver.net.layers[k].blobs[0].diff[...] *= lr
        solver.net.layers[k].blobs[1].diff[...] *= lr
        solver.net.layers[k].blobs[0].data[...] -= solver.net.layers[k].blobs[0].diff
        solver.net.layers[k].blobs[1].data[...] -= solver.net.layers[k].blobs[1].diff

# save the weights to compare later
w_fwdbwd_update = copy(solver.net.layers[1].blobs[0].data.astype('float64'))
b_fwdbwd_update = copy(solver.net.layers[1].blobs[1].data.astype('float64'))

# Compare
print "after iter", niter, ": weight diff: ", np.linalg.norm(w_solver_step - w_fwdbwd_update), "and bias diff:", np.linalg.norm(b_solver_step - b_fwdbwd_update)

将权重与两个测试进行比较的最后一行生成:

after iter 5 : weight diff: 0.000203027766144 and bias diff: 1.78390789051e-05中,正如我所期望的那样,这种差异为0.0。

有什么想法吗?

EN

回答 1

Stack Overflow用户

发布于 2016-11-20 20:17:08

您几乎是正确的,您只需将差异设置为零后,每次更新。Caffe不会自动地为您提供实现批处理累积的机会(为一次权重更新在多个批次上增加渐变,如果内存不够大以满足所需的批处理大小,这可能会有所帮助)。

另一个可能的问题是cudnn的使用,它的卷积实现是不确定的(或者如何设置它在caffe中被精确地使用)。一般来说,这应该是没有问题的,但在您的情况下,它造成的结果略有不同的结果,每次,因此不同的权重。如果您用cudnn编译caffe,您可以简单地将模式设置为cpu,以防止在测试时发生这种情况。

此外,求解器参数对权重更新也有影响。正如你所指出的,你应该知道:

  • lr_policy:“固定”
  • 动量:0
  • weight_decay: 0
  • random_seed: 52 #或任何其他常量

在网络中,确保不要使用学习速率乘数,通常偏差的学习速度是权重的两倍,但这不是您实现的行为。因此,您需要确保将它们设置为层定义中的一个:

代码语言:javascript
复制
param {
    lr_mult: 1 # weight lr multiplier
  }
param {
    lr_mult: 1 # bias lr multiplier
  }

最后但并非最不重要的一点是,这里有一个例子,说明您的代码在动量、权重衰减和lr_mult的情况下会是怎样的。在CPU模式下,这将产生预期的输出(没有差异):

代码语言:javascript
复制
import caffe
caffe.set_device(0)
caffe.set_mode_cpu()
import numpy as np

niter = 5
solver = None
solver = caffe.SGDSolver('solver.prototxt')

# Automatic SGD: TEST2
solver.step(niter)
# save the weights to compare later
w_solver_step = solver.net.layers[1].blobs[0].data.copy()
b_solver_step = solver.net.layers[1].blobs[1].data.copy()

# Manual SGD: TEST1
solver = None
solver = caffe.SGDSolver('solver.prototxt')
base_lr = 0.01
momentum = 0.9
weight_decay = 0.0005
lr_w_mult = 1
lr_b_mult = 2

momentum_hist = {}
for layer in solver.net.params:
    m_w = np.zeros_like(solver.net.params[layer][0].data)
    m_b = np.zeros_like(solver.net.params[layer][1].data)
    momentum_hist[layer] = [m_w, m_b]

for i in range(niter):
    solver.net.forward()
    solver.net.backward()
    for layer in solver.net.params:
        momentum_hist[layer][0] = momentum_hist[layer][0] * momentum + (solver.net.params[layer][0].diff + weight_decay *
                                                       solver.net.params[layer][0].data) * base_lr * lr_w_mult
        momentum_hist[layer][1] = momentum_hist[layer][1] * momentum + (solver.net.params[layer][1].diff + weight_decay *
                                                       solver.net.params[layer][1].data) * base_lr * lr_b_mult
        solver.net.params[layer][0].data[...] -= momentum_hist[layer][0]
        solver.net.params[layer][1].data[...] -= momentum_hist[layer][1]
        solver.net.params[layer][0].diff[...] *= 0
        solver.net.params[layer][1].diff[...] *= 0

# save the weights to compare later
w_fwdbwd_update = solver.net.layers[1].blobs[0].data.copy()
b_fwdbwd_update = solver.net.layers[1].blobs[1].data.copy()

# Compare
print "after iter", niter, ": weight diff: ", np.linalg.norm(w_solver_step - w_fwdbwd_update), "and bias diff:", np.linalg.norm(b_solver_step - b_fwdbwd_update)
票数 4
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/36459266

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档