首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >问答首页 >Tensorflow服务REST API抛出错误

Tensorflow服务REST API抛出错误
EN

Stack Overflow用户
提问于 2018-12-21 18:59:14
回答 1查看 215关注 0票数 1

我已经在tensorflow版本'1.10.0‘中为IRIS数据集构建了一个非常简单的分类模型。代码在jupyter notebook中运行良好。我正在尝试使用docker通过tensorflow服务进行部署和服务。虽然docker启动了,但我无法得到好的结果。Tensorflow服务对我来说有点新。我使用的命令和我得到的错误输出如下-

代码语言:javascript
运行
复制
curl -d '{"instances": [1.0, 2.0, 5.0,4.2]}'   -X POST http://localhost:8501/v1/models/irismodel:predict

{ "error": "You must feed a value for placeholder tensor \'y\' with dtype int32\n\t [[{{node y}} = Placeholder[_output_shapes=[<unknown>], dtype=DT_INT32, shape=<unknown>, _device=\"/job:localhost/replica:0/task:0/device:CPU:0\"]()]]" }

训练和保存模型的完整代码如下所示。请注意,我使用的是从saved_model.simple_save获得的对象。因为没有创建模型版本,所以我只创建了一个名为"1“的文件夹,并将内容移动到那里。

代码语言:javascript
运行
复制
from numpy import genfromtxt
my_data = genfromtxt('/my/path/iris.csv', delimiter=',',skip_header =1)

my_data[149,:]
array([5.9, 3. , 5.1, 1.8, 2. ])

import tensorflow as tf
import numpy as np

n_inputs = 4  # MNIST
n_hidden1 = 3
n_hidden2 = 2
n_outputs = 3

def reset_graph(seed=42):
  tf.reset_default_graph()
  tf.set_random_seed(seed)
  np.random.seed(seed)

reset_graph()

X = tf.placeholder(tf.float32, shape=(None, n_inputs), name="X")
y = tf.placeholder(tf.int32,shape=(None), name="y")

hidden1 = tf.layers.dense(X, n_hidden1, name="hidden1",activation=tf.nn.relu)
hidden2 = tf.layers.dense(hidden1, n_hidden2, name="hidden2",activation=tf.nn.relu)
logits = tf.layers.dense(hidden2, n_outputs, name="outputs")

xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)
loss = tf.reduce_mean(xentropy, name="loss")

learning_rate = 0.01

optimizer = tf.train.GradientDescentOptimizer(learning_rate)
training_op = optimizer.minimize(loss)

correct = tf.nn.in_top_k(logits, y, 1)
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))

init = tf.global_variables_initializer()
saver = tf.train.Saver()

arr = np.arange(150)
np.random.shuffle(arr)

my_data = my_data.reshape((150,5))
my_data = my_data[arr]

X_train = my_data[0:120,0:4]
X_test = my_data[120:150,0:4]
y_train = my_data[0:120,4].astype("int32")
y_test = my_data[120:150,4].astype("int32")

cursor = 0
def next_batch(X_train,y_train,batch_size):
   global cursor
   indices = np.arange(cursor,cursor+batch_size)
   cursor = cursor + batch_size
   return X_train[indices],y_train[indices]


from tensorflow import saved_model

n_epochs = 50
batch_size = 20
with tf.Session() as sess:
   init.run()
   for epoch in range(n_epochs):
        cursor = 0
        for iteration in range(X_train.shape[0] // batch_size):
            X_batch, y_batch = next_batch(X_train,y_train,batch_size)
            sess.run(training_op, feed_dict={X: X_batch, y: y_batch.astype("int32")})
        acc_train = accuracy.eval(feed_dict={X: X_batch, y: y_batch.astype("int32")})
        acc_test = accuracy.eval(feed_dict={X: X_test, y: y_test.astype("int32")})
        print(epoch, "Train accuracy:", acc_train, "Test accuracy:", acc_test)

   save_path = saver.save(sess, "./my_model_final.ckpt")
   saved_model.simple_save(sess,
        "/home/modelpath/imodel",
        inputs={"X": X},
        outputs={"y": y})

即使我通过Postman提交,我也会收到类似的错误。我想我可能在数据类型上做了一些错误,但不确定。另一个错误来源可能是我发送API请求的方式。任何指针都会很有帮助。谢谢。

EN

回答 1

Stack Overflow用户

回答已采纳

发布于 2019-06-10 23:51:12

我已经重现了你的错误,可以解决这个问题。将代码最后一行中的y替换为tf.dtypes.cast(np.argmax(logits), dtype = "int32", name = 'y_pred')

代码语言:javascript
运行
复制
with tf.Session() as sess:
   init.run()
   for epoch in range(n_epochs):
        cursor = 0
        for iteration in range(X_train.shape[0] // batch_size):
            X_batch, y_batch = next_batch(X_train,y_train,batch_size)
            sess.run(training_op, feed_dict={X: X_batch, y: y_batch.astype("int32")})
        acc_train = accuracy.eval(feed_dict={X: X_batch, y: y_batch.astype("int32")})
        acc_test = accuracy.eval(feed_dict={X: X_test, y: y_test.astype("int32")})
        print(epoch, "Train accuracy:", acc_train, "Test accuracy:", acc_test)

   Predicted_Output = tf.dtypes.cast(np.argmax(logits), dtype = "int32", name = 'y_pred')
   save_path = saver.save(sess, "./my_model_final.ckpt")   
   saved_model.simple_save(sess, "IRIS_Data_Export", inputs={"X": X}, outputs={"y": Predicted_Output})

输出如下图所示:

代码语言:javascript
运行
复制
{
    "outputs": 0
}
票数 1
EN
页面原文内容由Stack Overflow提供。腾讯云小微IT领域专用引擎提供翻译支持
原文链接:

https://stackoverflow.com/questions/53883615

复制
相关文章

相似问题

领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档