首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

"torch._C._nn.nll_loss“函数的CPU版本

"torch._C._nn.nll_loss"函数是PyTorch深度学习框架中的一个函数,用于计算负对数似然损失(Negative Log Likelihood Loss)。它主要用于多分类问题中,通过将预测结果与真实标签进行比较,计算模型预测的概率分布与真实标签之间的差异。

该函数的输入参数包括预测结果(通常是模型输出的概率分布)、真实标签和可选的权重。它的输出是一个标量,表示模型预测与真实标签之间的损失值。

该函数的CPU版本是指在CPU上执行的版本,适用于没有GPU加速的情况。在使用该函数之前,需要先将数据和模型放置在CPU上。

该函数的优势在于它能够直接计算多分类问题中的损失值,无需手动编写损失函数。它还支持权重的设置,可以用于处理类别不平衡的情况。

应用场景:

  • 多分类任务:例如图像分类、文本分类等任务中,可以使用该函数计算损失值。
  • 模型训练:在深度学习模型的训练过程中,通常需要计算损失值来进行反向传播和参数更新。

推荐的腾讯云相关产品和产品介绍链接地址:

  • 腾讯云AI开发平台:https://cloud.tencent.com/product/ai
  • 腾讯云深度学习平台:https://cloud.tencent.com/product/dla
  • 腾讯云机器学习平台:https://cloud.tencent.com/product/mlp
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 国家信息中心数据恢复中心官网_stn源源

    写在前面:目前在学习pytorch官方文档的内容,以此来记录自己的学习过程,本次学习的是STN网络。 传送门:官方文档 中文翻译 STN论文链接(Spatial Transformer Networks ) 为什么要用到STN网络呢: 卷积神经网络定义了一个异常强大的模型类,但在计算和参数有效的方式下仍然受限于对输入数据的空间不变性。在此引入了一个新的可学模块,空间变换网络,它显式地允许在网络中对数据进行空间变换操作。这个可微的模块可以插入到现有的卷积架构中,使神经网络能够主动地在空间上转换特征映射,在特征映射本身上有条件,而不需要对优化过程进行额外的训练监督或修改。我们展示了空间变形的使用结果,在模型中学习了平移、缩放、旋转和更一般的扭曲,结果在几个基准上得到了很好的效果。

    01

    Pytorch实现STN

    import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision from torchvision import datasets, transforms import matplotlib.pyplot as plt import numpy as np class TPSNet(nn.Module): def __init__(self): super(TPSNet, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) # Spatial transformer localization-network self.localization = nn.Sequential( nn.Conv2d(in_channels=1, out_channels=8, kernel_size=7), nn.MaxPool2d(kernel_size=2, stride=2), nn.ReLU(True), nn.Conv2d(in_channels=8, out_channels=10, kernel_size=5), nn.MaxPool2d(kernel_size=2, stride=2), nn.ReLU(True) ) # Regressor for the 3 * 2 affine matrix self.fc_loc = nn.Sequential( nn.Linear(10 * 3 * 3, 32), nn.ReLU(True), nn.Linear(32, 3 * 2) ) # Initialize the weights/bias with identity transformation self.fc_loc[2].weight.data.fill_(0) self.fc_loc[2].bias.data = torch.FloatTensor([1, 0, 0, 0, 1, 0]) # Spatial transformer network forward function def stn(self, x): #x是[b,1,28,28] xs = self.localization(x) #xs是[b,10,3,3] xs = xs.view(-1, 10 * 3 * 3) #xs是[b,90] theta = self.fc_loc(xs) #theta是[b,6] theta = theta.view(-1, 2, 3) grid = F.affine_grid(theta, x.size()) x = F.grid_sample(x, grid) #x是[b,1,28,28] return x def forward(self, x): # transform the input #x是[b,1,28,28] x = self.stn(x) #x是[b,1,28,28] # Perform the usual forward pass x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x, dim=1) def train(epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): if use_cuda: data, target = data.cuda(), target.cuda() optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) #和TPSNet中的log_softmax搭配,就是CE loss loss.backward() optimizer.step() if batch_idx

    04

    天天用AI还不知道AI是怎么反馈的?一文了解生成模型常见损失函数Python代码实现+计算原理解析

    损失函数无疑是机器学习和深度学习效果验证的核心检验功能,用于评估模型预测值与实际值之间的差异。我们学习机器学习和深度学习或多或少都接触到了损失函数,但是我们缺少细致的对损失函数进行分类,或者系统的学习损失函数在不同的算法和任务中的不同的应用。因此有必要对整个损失函数体系有个比较全面的认识,方便以后我们遇到各类功能不同的损失函数有个清楚的认知,而且一般面试以及论文写作基本都会对这方面的知识涉及的非常深入。故本篇文章将结合实际Python代码实现损失函数功能,以及对整个损失函数体系进行深入了解。

    06
    领券