首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    在bash中export命令作用是什么_bash:no such file or directory

    不幸的是,没有办法将变量export 到父进程(就是调用这个脚本或shell 的进程)中....关于export 命令的一个重要的使用就是用在启动文件中,启动文件是用来初始化并且 设置环境变量,让用户进程可以存取环境变量 脚本不能export(导出)变量到它的父进程(parent process)...们学的生物一样,一个子进程可以从父进程里继承但不能去影响父进程. 1 WHATEVER=/home/bozo 2 export WHATEVER 3 exit 0 bash...echo WHATEVER bash 可以确定, 回到命令提示符, WHATEVER 变量仍然没有设置....在子SHELL(subshell)设置和操作变量 , 然后尝试在子 SHELL 的作用范围外使用相同名的变 量将会导致非期望的结果. 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。

    3.3K20

    在PowerBI的切片器中搜索

    在制作PowerBI报告时,一般来说,我们都会创建一些切片器。为了节省空间,一般情况下尤其是类目比较多的时候,大多采用下拉式的: ?...不过,在选项比较多的时候,当你需要查找某个或者某几个城市的销售额时,你会发现这是一件很难办的事情,比如我们要看一下青岛的销售额时: ?...那,有没有能够在切片器中进行搜索的选项呢? 答案是:有的。 如图: ? 只要在Power BI Desktop的报告中鼠标左键选中切片器,按一下Ctrl+F即可。...此时,切片器中会出现搜索框,在搜索框中输入内容点击选择即可: ? 如果想同时看青岛和济南的销售额,可以在选中青岛后,重新搜索济南,然后按住Ctrl点击鼠标左键即可: ?...发布到云端,同样也可以进行搜索: ? 其实如果不按快捷键,也是能够找到这个搜索按钮的,点击切片器-点击三个小点-点击搜索,它就出来了: ? Simple but useful,isn't it?

    12.3K20

    在Google搜索中玩打砖块

    在1975年时,苹果公司的联合创始人斯蒂夫·沃兹尼亚克以及乔布斯向当时的项目主管Al Alcorn提出了这项提议;同年,Al Alcorn接受了这个打砖块的项目,并要求二人在四天内设计出原型。...最终二人连夜赶工,在四天之内设计完成,并且只使用了45个芯片。但乔布斯却向沃兹尼亚克隐瞒了额外奖金的事情,在平分350美元之后,自己独吞了余下的额外奖金。...在今天,Google将这款打砖块的游戏放在了图片搜索中,只需要搜索Atari Breakout或者直接点击链接,就可以开始游戏。每次游戏一共五个球,用完则游戏结束,给出最后得分。...这里为大家提供几个其他的Google彩蛋: 在Google搜索”tilt”或者”askew”,搜索结果将会倾斜; 搜索”Do a barrel roll”,搜索结果将会旋转一周 在Google...地图搜索任意一个国内到美国西海岸的步行路线,将会提示“横渡太平洋”。

    1.5K20

    机器学习在组合优化中的应用(上)

    有一些组合优化问题不是那么的“难”,比如最短路问题,可以在多项式的时间内进行求解。然而,对于一些NP-hard问题,就无法在多项式时间内求解了。...1 动机 在组合优化算法中使用机器学习的方法,主要有两方面: (1)优化算法中某些模块计算非常消耗时间和资源,可以利用机器学习得出一个近似的值,从而加快算法的速度。...(2)现存的一些优化方法效果并不是那么显著,希望通过学习的方法学习搜索最优策略过程中的一些经验,提高当前算法的效果。(算是一种新思路?)...一个组合优化问题呢通常都能被建模成一个带约束的最小化问题进行求解,即将问题以数学表达式的形式给出,通过约束变量的范围,让变量在可行域内作出决策,使得目标值最小的过程。...(当前行为“好”以后就多往这个方向发展,如果“坏”就尽量避免这样的行为,即不是直接得到了标签,而是自己在实际中总结得到的) 3 近来的研究 第1节的时候,我们提到了在组合优化中使用机器学习的两种动机,那么现在很多研究也是围绕着这两方面进行展开的

    3K30

    DNN在搜索场景中的应用

    DNN在搜索场景中的应用潜力,也许会比你想象的更大。 --《阿里技术》 1.背 景 搜索排序的特征在于大量的使用了LR,GBDT,SVM等模型及其变种。...所以我们第一考虑到的是降维,在降维的基础上,进一步考虑特征的组合。所以DNN(深度神经网络)很自然进入了我们的考虑范围。...在FNN的基础上,又加上了人工的一些特征,让模型可以主动抓住经验中更有用的特征。 ? ? 3. Deep Learning模型 在搜索中,使用了DNN进行了尝试了转化率预估模型。...转化率预估是搜索应用场景的一个重要问题,转化率预估对应的输入特征包含各个不同域的特征,如用户域,宝贝域,query域等,各种特征的维度都能高达千万,甚至上亿级别,如何在模型中处理超高维度的特征,成为了一个亟待解决的问题...在以上的流程中,无法处理有重叠词语的两个查询短语的关系,比如“红色连衣裙”,“红色鞋子”,这两个查询短语都有“红色”这个词语,但是在往常的处理中,这两者并没有任何关系,是独立的两个查询ID,如此一来可能会丢掉一些用户对某些词语偏好的

    3.7K40

    组合电路在 HLS 中的重要性

    组合电路在 HLS 中的重要性 该项目通过一个示例演示了 HLS 中组合电路对设计的影响。 在 HLS 中描述组合任务非常重要,因为它直接影响整个系统的性能。...组合电路中从输入到输出的不同路径可能具有各种延迟。最长路径也称为关键路径,被定义为设计传播延迟。 在时序电路中,时钟周期对设计性能有直接影响。图 2 中组合部分的传播延迟决定了最小时钟周期。...组合部分也对相关时序电路的延迟有直接影响。 因此,了解如何在 HLS 中设计高效的组合电路是在硬件上开发高性能算法的第一步。...图5 现在让我们考虑以下实现,将模运算替换为其等效的算术表达式,即 a%10 = a – 10*(a/10)。如果我们直接使用这个表达式,编译器会优化代码,再次使用模运算,并生成相同的 RTL 描述。...此外,第二种方案在 FPGA 上使用的资源要少得多。 结论 设计高效的组合电路是在 HLS 中开发算法或系统控制器的第一步。多种优化技术和编码风格可用于描述复杂算法的组合部分。

    28130

    在Solr中搜索人名的小建议

    如果我们能够解决两个主要问题,人名搜索的问题就解决一大半了。 作者姓名重排,无论是在文档还是查询中,有些部分都被省略了:(Doug Turnbull, D. Turnbull, D. G....] [dougl] [dougla] [douglas] 有关此过滤器(以及Solr中的许多其他过滤器)需要注意的是,每个生成的标记最终在索引文档中占据相同的位置。...现在用户在搜索框中输入“Turnbull,D.”。然后呢?只需重复之前的操作,而不是重新搜索: AuthorsPre:“Turnbull,D.”...所以[D.]和[Douglas]在索引文档中处于相同的位置。这意味着,当位置重要时(如在词组查询中)“D....另一方面,我们的相似搜索为Solr提供了一些自由度,可以重新排列标记以满足匹配需要,从而给了自由组合的可能 - 所以会搜到许多重排和缩写的人名。

    2.7K120
    领券