本文介绍基于Python的tensorflow库,将tensorflow与keras训练好的SavedModel格式神经网络模型转换为frozen graph格式,从而可以用OpenCV库在C++等其他语言中将其打开的方法。
从前面的Tensorflow环境搭建到目标检测模型迁移学习,已经完成了一个简答的扑克牌检测器,不管是从图片还是视频都能从画面中识别出有扑克的目标,并标识出扑克点数。但是,我想在想让他放在浏览器上可能实际使用,那么要如何让Tensorflow模型转换成web格式的呢?接下来将从实践的角度详细介绍一下部署方法!
这是当微信小程序遇上TensorFlow系列文章的第四篇文章,阅读本文,你将了解到:
这一章我们借着之前的NER的模型聊聊tensorflow serving,以及gRPC调用要注意的点。以下代码为了方便理解做了简化,完整代码详见Github-ChineseNER ,里面提供了训练好的包括bert_bilstm_crf, bilstm_crf_softlexcion,和CWS+NER多任务在内的4个模型,可以开箱即用。这里tensorflow模型用的是estimator框架,整个推理环节主要分成:模型export,warmup,serving, client request四步
而Autograph机制可以将动态图转换成静态计算图,兼收执行效率和编码效率之利。
TensorFlow Serving[1] 可以快速部署 Tensorflow 模型,上线 gRPC 或 REST API。
尝试过迁移学习的同学们都知道,Tensorflow的模型保存加载有不同格式,使用方法也不一样,新手会觉得乱七八糟,所以本文做一个梳理。从模型的保存到加载,再到使用,力求理清这个流程。
部署完docker后,如果是cpu环境,可以直接拉取tensorflow/serving,如果是GPU环境则麻烦点,具体参考前一篇,这里就不再赘述了。
有了能做出惊人预测的模型之后,要做什么呢?当然是部署生产了。这只要用模型运行一批数据就成,可能需要写一个脚本让模型每夜都跑着。但是,现实通常会更复杂。系统基础组件都可能需要这个模型用于实时数据,这种情况需要将模型包装成网络服务:这样的话,任何组件都可以通过REST API询问模型。随着时间的推移,你需要用新数据重新训练模型,更新生产版本。必须处理好模型版本,平稳地过渡到新版本,碰到问题的话需要回滚,也许要并行运行多个版本做AB测试。如果产品很成功,你的服务可能每秒会有大量查询,系统必须提升负载能力。提升负载能力的方法之一,是使用TF Serving,通过自己的硬件或通过云服务,比如Google Cloud API平台。TF Serving能高效服务化模型,优雅处理模型过渡,等等。如果使用云平台,还能获得其它功能,比如强大的监督工具。
当我们历尽千辛万苦,终于训练出来一个模型时,想不想将这个模型发布出去,让更多人的受益?
TensorFlow训练好的模型以tensorflow原生方式保存成protobuf文件后可以用许多方式部署运行。
在 Tensorflow 给的官方例子中 Use TensorFlow Serving with Kubernetes,是将模型拷贝到镜像里的,这里是会有点不太灵活,因为更新模型就要重新构建镜像,并且再去更新对应的 Pod。
kubeflow 中采用了 tensorflow serving 作为官方的tensorflow模型接口, TensorFlow Serving是GOOGLE开源的一个服务系统,适用于部署机器学习模型,灵活、性能高、可用于生产环境。 TensorFlow Serving可以轻松部署新算法和实验,同时保持相同的服务器架构和API。
本次我们讲一下如何利用colab训练深度学习(Tensorflow)模型,并上传到Google云平台上面。然后我们再通过GEE进行调用,这样我们在GEE上面运行自己的深度学习模型了。
如何将机器学习(ML)模型部署上线至生产环境已成为经常性的热门话题。为此许多公司和框架提出了各种不同的解决方案。
特邀博文 / 软件工程师 Pierric Cistac;研究员 Victor Sanh;技术主管 Anthony Moi,来自 Hugging Face
欢迎关注专栏:Java架构技术进阶。里面有大量batj面试题集锦,还有各种技术分享,如有好文章也欢迎投稿哦。
在了解如何利用TesnsorFlow构建和训练各种模型——从基本的机器学习模型到复杂的深度学习网络后,我们就要考虑如何将训练好的模型投入于产品,以使其能够为其他应用所用,本文对此将进行详细介绍。文章节选自《面向机器智能的TensorFlow实践》第7章。 本文将创建一个简单的Web App,使用户能够上传一幅图像,并对其运行Inception模型,实现图像的自动分类。 搭建TensorFlow服务开发环境 Docker镜像 TensorFlow服务是用于构建允许用户在产品中使用我们提供的模型的服务器的工具。
即使使用默认设置,Nginx也是一个非常安全可靠的Web服务器。但是,有很多方法可以进一步保护Nginx。
关于重写模式, 很多资源都是介绍修改 Apache2 httpd.conf, 但我找了很久都未找到 httpd.conf 文件.
实验设备管理系统设计 实验设备信息包括:设备编号,设备种类(如:微机、打印机、扫描仪等等),设备名称,设备价格,设备购入日期,是否报废,报废日期等。 主要功能: (1)能够完成对设备的录入和修改 (2)对设备进行分类统计 (3)设备的破损耗费和遗损处理 (4)设备的查询 要求:使用文件方式存储数据。
1、在tensorflow绘图的情况下,使用tf.saved_model.simple_save()方法保存模型
public class DefaultMQProducer extends ClientConfig implements MQProducer
这两行代码首先导入了make_server函数和自定义的load_html、load_template函数,以便后续使用。
卷积神经网络(CNN)非常适合计算机视觉任务。使用对大型图像集(如ImageNet,COCO等)进行训练的预训练模型,可以快速使这些体系结构专业化,以适合独特数据集。此过程称为迁移学习。但是有一个陷阱!用于图像分类和对象检测任务的预训练模型通常在固定的输入图像尺寸上训练。这些通常从224x224x3到某个范围变化,512x512x3并且大多数具有1的长宽比,即图像的宽度和高度相等。如果它们不相等,则将图像调整为相等的高度和宽度。
在编写一个准入 Webhook 服务时,需要配置相关证书,k8s 提供了 api 用于对用户自主创建的证书进行认证签发。以下部分演示为 Webhook 服务创建 TLS 证书。
随着人工智能技术的飞速发展,大模型已成为当前人工智能领域的一大趋势。从最早的深度学习到如今的超大规模预训练模型,如GPT-3等,大模型在自然语言处理、计算机视觉、语音识别等领域表现出了惊人的能力。那么,在大模型时代来临的背景下,算法工程师应该如何应对,何去何从呢?
TensorFlow服务,托管模型并提供远程访问。TensorFlow服务有一个很好的文档的架构和有用的教程。不幸的是,这个有点难用,你需要做较大改动来为自己的模型提供服务。
如果您使用过 TensorFlow 1.x,则本部分将重点介绍迁移到 TensorFlow 2.0 所需的总体概念更改。 它还将教您使用 TensorFlow 可以进行的各种 AIY 项目。 最后,本节向您展示如何将 TensorFlow Lite 与跨多个平台的低功耗设备一起使用。
Suaro希望使用OpenCV来实现模型加载与推演,但是没有成功,因此开了issue寻求我的帮助。
Knative 是一个基于 Kubernetes 的,用于构建、部署和管理现代 serverless 应用的平台。Getting Started with Knative 是一本由 Pivotal 公司赞助 O’Reilly 出品的电子书,公众号后台回复“knative”获取英文版下载地址。本书中文版由 ServiceMesher 社区自发翻译系列文章,这是该系列的第6章。
这两天搜索了不少关于Tensorflow模型保存与加载的资料,发现很多资料都是关于checkpoints模型格式的,而最新的SavedModel模型格式则资料较少,为此总结一下TensorFlow如何保存SavedModel模型,并加载之。
在机器学习浪潮迸发的当下,AI 工程师除了需要训练、调试自己的模型之外,还需要将模型进行部署上线,从而验证模型的效果(当然,有的时候,这部分工作由 AI 系统工程师来完成)。这一部分工作对于 AI 工程师们来说是繁琐、且消耗额外精力的。
指令: log_not_foundon | off; 默认值: log_not_found on; 配置上下文: http, server, location
又是一年一度的十一黄金旅游周,你是在景区看人从众叕,还是在高速公路上观看大妈打太极呢?旅游黄金周我一般是尽量不出门,这个十一也不例外。十月一日跑了一个半马迎接国庆,十月二号选择去了一个偏门的景点:张之洞与武汉博物馆。今天则宅在家,吃吃喝喝之余,琢磨起识别狗狗的微信小程序。
在本文的第一部分中,我们将讨论设置适合 Knative 0.6.0 版的开发环境。第二部分介绍第一个 serverless 微服务的部署。使用 Knative 创建 serverless 应用程序的基本要求是对 Kubernetes 的扎实知识。如果你没有经验,则应该学习官方的基本 Kubernetes 教程[1]。
表。 表 2. SQLSTATE 类代码 类代码 含义 要获得子代码,参阅…00 完全成功完成 表 301 警告 表 402 无数据 表 507 动态 SQL 错误 表 608 连接异常 表 709 触发操作异常 表 80A 功能部件不受支持 表 90D 目标类型规范无效 表 100F 无效标记 表 110K RESIGNAL 语句无效 表 120N SQL/XML 映射错误 表 1320 找不到 CASE 语句的条件 表 1521 基数违例 表 1622 数据异常 表 1723 约束违例 表 1824 无效的游标状态 表 1925 无效的事务状态 表 2026 无效 SQL 语句标识 表 2128 无效权限规范 表 232D 无效事务终止 表 242E 无效连接名称 表 2534 无效的游标名称 表 2636 游标灵敏度异常 表 2738 外部函数异常 表 2839 外部函数调用异常 表 293B SAVEPOINT 无效 表 3040 事务回滚 表 3142 语法错误或访问规则违例 表 3244 WITH CHECK OPTION 违例 表 3346 Java DDL 表 3451 无效应用程序状态 表 3553 无效操作数或不一致的规范 表 3654 超出 SQL 限制,或超出产品限制 表 3755 对象不处于先决条件状态 表 3856 其他 SQL 或产品错误 表 3957 资源不可用或操作员干预 表 4058 系统错误 表 415U 实用程序 表 42
WP Rocket缓存插件是当前最高效也是最灵活的WordPress静态缓存插件。WP Rocket在性能方面集成了所有最新功能:延迟图像加载,延迟加载javascipt,缩小html代码体积,连接和所辖javascript文件。WP Rocket还拥有自己的自托管爬虫机器人,它将访问您的站点并生成缓存文件,以便当人访问者访问您的站点时,他们会立即获得该页面的快速缓存版本。我们还有一个站点地图预载功能。
即便使用无服务器架构,处理和响应 HTTP 请求的能力依然重要。在开始写代码使用事件触发一个函数之前,您需要有地方来运行代码。
要编写示例 Knative 服务,您必须运行 Kubernetes 集群。如果您没有集群,您可以使用 Minikube运行本地 单节点集群。您的集群必须至少有两个 CPU 和 4GB RAM。
今年六月TensorFlow Serving在以往的gRPC API之外,开始支持RESTful API了,使得访问更加符合常用的JSON习惯,本文翻译自官方文档,提供RESTful API的使用指南,如与官网有出入,以官网为准,以下为正文。
最近在测试一些通用模型+项目,包括:CLUE(tf+pytorch),bert4keras(keras), Kashgari(keras+tf)等。其中如果要部署的话,就有tensorflow-serving和flask的选择了。 这里刚好有一个非常好的实战例子,基于tensorflow 1.x的,比较全面。
使用python难免会出现各种各样的报错,以下是Python常见的报错以及解决方法(持续更新),快进入收藏吃灰吧
相信部分朋友已经看过我们的 《Windows 应急响应手册》了,我们这边也得到部分朋友的正向反馈,包括工具、方法等。
默认情况下,Docker网络使用仅使用主机虚机网桥bridge,主机内的所有容器都连接至该网桥。连接到此桥的所有容器都可以彼此通信,但不能与不同主机上的容器通信。通常,这种通信使用端口映射来处理,其中容器端口绑定到主机上的端口,所有通信都通过物理主机上的端口路由。
和尚是搞 Android 的,曾经尝试过打包 APK 文件失败,由于种种原因暂停研究,今天重新学习一下如何打包 APK 。官网讲解的清楚明了,和尚在此基础上整理一下打包过程中遇到的问题。
1xx:指示信息–表示请求已接收,继续处理 2xx:成功–表示请求已被成功接收、理解、接受 3xx:重定向–要完成请求必须进行更进一步的操作 4xx:客户端错误–请求有语法错误或请求无法实现 5xx:服务器端错误–服务器未能实现合法的请求 状态码详解
领取专属 10元无门槛券
手把手带您无忧上云