首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

“不受欢迎”词的词典?

“不受欢迎”词的词典是指一个词典或词汇集合,其中收录了那些在社交、文化、语言等方面不受欢迎、不推崇的词汇。这些词汇通常被认为是不礼貌、不文雅、不得体、冒犯、侮辱、歧视或引起争议的。通过提供这样一个词典,人们可以了解和避免使用这些不受欢迎的词汇,以遵守社会规范、保持公共礼仪并促进积极的人际关系。

尽管“不受欢迎”词的词典没有一个具体的官方定义或标准,但以下是一些例子:

  1. 脏话或粗俗词汇:这些词汇包括污秽的语言、侮辱性的词汇、亵渎性的词汇等,其使用常常被认为是不受欢迎的,并且可能引起他人的反感或伤害。
  2. 歧视性词汇:这些词汇指那些基于种族、性别、宗教、性取向、残疾或其他个人属性进行歧视的词汇。这类词汇在公共场合或正式场合中是不受欢迎的,并且可能触犯法律或伤害他人。
  3. 辱骂词汇:这些词汇是指用于对他人进行侮辱、诋毁或恶意攻击的言语。这些词汇往往会引发争吵、冲突和不和谐的气氛,因此在大多数情况下都是不受欢迎的。
  4. 不适当或冒犯性词汇:这些词汇是指那些在特定场合或文化背景下被认为是不得体、不适宜或冒犯他人的词汇。这可能包括针对宗教、文化习俗、道德价值观或敏感话题的词汇。

需要注意的是,具体的“不受欢迎”词的词典内容可能因社会、文化和个人价值观的差异而有所不同。因此,当提供词典内容时,应根据特定的语言环境和受众群体的需要,选择性地提供信息,并确保遵守当地的道德和法律标准。

腾讯云不提供特定的词典产品或链接地址来解释“不受欢迎”词的词典。如有需要,建议使用通用的词典工具或在线词典进行查询和了解。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 一文了解自然语言处理的每个范畴用到的核心技术,难点和热点(1)

    希望时间的流逝不仅仅丰富了我们的阅历,更重要的是通过提炼让我们得以升华,走向卓越。 1电影Her见识NLP 可能很多朋友看过好莱坞的电影《Her》,电影中讲述的主角耳朵里戴了一个耳机,这是一个人工智能的虚拟助手,能够通过耳机与人工智能来对话。 人机交互方式在经历了第一代的键盘鼠标,第二代的触摸屏和按键后,第三代对话式人工智能操作系统正在来临,让用户通过最便捷、简单的方式获取信息和服务。 这其中功不可没的就是自然语言处理技术(NLP),我们熟知的问答系统就是一种最直接的人机交互方式。NLP过去经历了怎样的发

    06

    这是一篇关于「情绪分析」和「情感检测」的综述(非常详细)

    随着互联网时代的迅速发展,社交网络平台已经成为人们向全世界传达情感的重要手段。有些人使用文本内容、图片、音频和视频来表达他们的观点。另一方面,通过基于 Web 的网络媒体进行的文本通信有点让人不知所措。由于社交媒体平台,互联网上每一秒都会产生大量的非结构化数据。数据的处理速度必须与生成的数据一样快,这样才能够及时理解人类心理,并且可以使用文本情感分析来完成。它评估作者对一个项目、行政机构、个人或地点的态度是消极的、积极的还是中立的。在某些应用中,不仅需要情绪分析,而且还需要进行情绪检测,这可以精确地确定个人的情绪/心理状态。「本文提供了对情感分析水平、各种情感模型以及情感分析和文本情感检测过程的理解;最后,本文讨论了情绪和情感分析过程中面临的挑战」。

    02

    Python 文本挖掘:使用情感词典进行情感分析(算法及程序设计)

    情感分析就是分析一句话说得是很主观还是客观描述,分析这句话表达的是积极的情绪还是消极的情绪。 原理 比如这么一句话:“这手机的画面极好,操作也比较流畅。不过拍照真的太烂了!系统也不好。” ① 情感词 要分析一句话是积极的还是消极的,最简单最基础的方法就是找出句子里面的情感词,积极的情感词比如:赞,好,顺手,华丽等,消极情感词比如:差,烂,坏,坑爹等。出现一个积极词就+1,出现一个消极词就-1。 里面就有“好”,“流畅”两个积极情感词,“烂”一个消极情感词。那它的情感分值就是1+1-1+1=2. 很明显这个分

    015

    中文情感词库_情感识别

    文本情感倾向性分析(也称为意见挖掘)是指识别和提取原素材中的主观信息,并对带有感情色彩的文本进行分析处理和归纳推理的过程。主要用于实时社交媒体的内容,如微博评论等。而BosonNLP情感词典是从微博、新闻、论坛等数据来源的上百万篇情感标注数据当中自动构建的情感极性词典。因为标注包括微博等网络社交媒体平台的数据,该词典囊括了很多网络用语及非正式简称,对非规范文本也有较高的覆盖率。本文主要基于BosonNLP情感词典,同时使用程度副词词典和否定词词典(借助《知网》情感分析用词语集等文本构建)和哈工大停用词表,共同通过情感打分的方式进行(这里以前文《利用Python系统性爬取微博评论》https://blog.csdn.net/kutalx/article/details/115242052)中获取的评论数据为依托)的情感倾向性分析。

    04

    Python做文本挖掘的情感极性分析(基于情感词典的方法)

    关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第二 【Python】:排名第三 【算法】:排名第四 我们会再接再厉 成为全网优质的技术类公众号 「情感极性分析」是对带有感情色彩的主观性文本进行分析、处理、归纳和推理的过程。按照处理文本的类别不同,可分为基于新闻评论的情感分析和基于产品评论的情感分析。其中,前者多用于舆情监控和信息预测,后者可帮助用户了解某一产品在大众心目中的口碑。目前常见的情感极性分析方法主要是两种:基于情感词典的方法(本次内容)和基于机器学习的方法(下次内容)。 1

    06

    【问底】严澜:数据挖掘入门——分词

    谷歌4亿英镑收购人工智能公司DeepMind,百度目前正推进“百度大脑”项目,腾讯、阿里等各大巨头也在积极布局深度学习。随着社会化数据大量产生,硬件速度上升、成本降低,大数据技术的落地实现,让冷冰冰的数据具有智慧逐渐成为新的热点。要从数据中发现有用的信息就要用到数据挖掘技术,不过买来的数据挖掘书籍一打开全是大量的数学公式,而课本知识早已还给老师了,着实难以下手、非常头大! 我们不妨先跳过数学公式,看看我们了解数据挖掘的目的——发现数据中价值。这个才是关键,如何发现数据中的价值。那什么是数据呢?比如大家要上网

    09
    领券