=0 and axis=1 的使用示例说明:
print("="*50)
data=np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12]])
print(data)
print...=1,则沿着第二个维度的方向进行计算,即为4 按行中的4个数据进行计算,得到3组行数据计算结果
print("="*50)
#pandas 里面axis=0 and axis=1 的使用示例说明:...()) #在pandas中,如果没有指定axis,则默认按axis=0来计算
print(df.mean(axis=0)) #若指定了axis=0,则按照第一个维度的变化方向来计算,即为3 按列中的3...)
train['predict']=linear(train[['room','area']].values,np.array([0.1,0.1,0.0]))
#能够看到,在该参数下,模型的预测价格和真实价格有较大的差距....那么寻找合适的参数值是咱们须要作的事情
print(train.head())
#预测函数为 h(x) = wx + b
#偏差的平方和函数:
def mean_squared_error(pred_y