首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    视觉的跨界 Wiki-LLaVA | lmage + Question 的奇妙反应,生成多模态大型语言模型(MLLMs)!

    近期,大型语言模型(LLM)在零样本文本任务中展现了令人印象深刻的性能。特别是,近期的研究设计出了能够根据用户指示处理多样任务的模型[6, 30, 41]。在这个背景下,经典的方法是在多种通过自然语言描述的任务上微调模型[7, 34],从而使模型能够吸收外部提供的指示,并促进在多个领域内的强大泛化能力。 在这些进展之后,计算机视觉界开始研究将这些模型扩展到视觉和语言的情境中,从而生成多模态大型语言模型(MLLMs)。在这方面,通过视觉到语言的 Adapter 将视觉特征融合到LLM的主干中,引起了显著的性能提升,使得对需要精心设计的视觉描述的视觉和语言任务能够广泛泛化。

    01

    维基百科有6000多机器人编辑,那么问题来了,他们要吵架怎么办?

    很多人可能都听说人工智能已经可以写文章了,但是你可能不知道编辑机器人早就已经是维基百科最重要的贡献群体之一。 2001 年,维基百科引入了机器人编辑者的概念,任何用户可以为自己研发的机器人单独建立一个维基百科帐号,只要根据维基百科社区官方的规定对帐号进行标注,即可让机器人参与维基百科的编辑。 2014 年,机器人在维基百科的所有语言中完成了 15% 的编辑动作,他们识别、撤销破坏行为,锁定遭到频繁篡改的页面、识别错别字和病句、创建不同语言之间的链接、自动导入站外内容、进行数据挖掘、识别侵权的内容并为新手

    03
    领券