首先明确最终web三维智慧城市的形态,在最近的项目中,我们接触到了一个县级城市的web三维城市可视化。
Three.js是一个流行的JavaScript库,用于在浏览器中创建和显示3D图形。它基于WebGL,一个浏览器支持的3D图形API,使得开发者能够在网页上创建复杂的3D场景和交互体验。
本文不会对Three.js几何体、材质、相机、模型、光源等概念详细讲解,会首先分成几个模块给大家快速演示一盒小案例。大家可以根据这几个模块快速了解Three.js的无限魅力。
上一节我们介绍了Threejs中二维图形相关的类,这一节我们来聊一聊如何通过创建的二维图形来生成三维图形
作者:Dawei Yang,Chaowei Xiao,Bo Li,Jia Deng,Mingyan Liu
webGL是基于OpenGL的Web3D图形规范,是一套JavaScript的API。简单来说,可以把它看成是3D版的canvas。恩,你会这样引入canvas对吧:
三维重建是指从单张二维图像或多张二维图像中重建出物体的三维模型,并对三维模型进行纹理映射的过程。三维重建可获取从任意视角观测并具有色彩纹理的三维模型,是计算机视觉领域的一个重要研究方向。传统的三维重建方法通常需要输入大量图像,并进行相机参数估计、密集点云重建、表面重建和纹理映射等多个步骤。近年来,深度学习背景下的图像三维重建受到了广泛关注,并表现出了优越的性能和发展前景。
在最初的六天,我创造了天与地 webGL是基于OpenGL的Web3D图形规范,是一套JavaScript的API。简单来说,可以把它看成是3D版的canvas。恩,你会这样引入canvas对吧:
基于少量图像的三维重建被认为是第三代人工智能的经典应用之一。在计算机图形学和计算机视觉领域,基于少量图像的三维重建任务因具有广泛的应用场景和很高的研究价值,长期以来吸引着众多学者的目光。引入深度学习方法后,该领域于近年来得到了长足发展。对此类基于少量图像的三维重建任务进行了全面阐述,并介绍了本研究组在该方面的系列工作,对其中涉及的数据类型进行分析,阐明其适用性和一般处理方法。此外,对常见的数据集进行分析、整理,针对不同重建方法,归纳出其基本框架、思路。最后,展示了一些常见三维重建的代表性实验结果,并提出了未来可能的研究方向。
项目网址:http://hiroharu-kato.com/projects_en/neural_renderer.html
随着深度神经网络的到来,基于学习的三维重建方法逐渐变得流行。但是和图像不同的是,在3D中没有规范的表示,既能高效地进行计算,又能有效地存储,同时还能表示任意拓扑的高分辨率几何图形。
三维重建作为环境感知的关键技术之一,可用于自动驾驶、虚拟现实、运动目标监测、行为分析、安防监控和重点人群监护等。现在每个人都在研究识别,但识别只是计算机视觉的一部分。真正意义上的计算机视觉要超越识别,感知三维环境。我们活在三维空间里,要做到交互和感知,就必须将世界恢复到三维。所以,在识别的基础上,计算机视觉下一步必须走向三维重建。本文笔者将带大家初步了解三维重建的相关内容以及算法。
很多网友反应“这也太可爱了吧”,连摩纳哥亲王也想带回去两个给自己的龙凤胎,请求工作人员再为自己制作一个冰墩墩,不然回去也就“不好交代”了。
1.plot()函数 plot函数用于绘制二维平面上的线性坐标曲线图,要提供一组x坐标和对应的y坐标,可以绘制分别以x和y为横、纵坐标的二维曲线。 例:
三维重建算法广泛应用于手机等移动设备中,常见的算法有SfM,REMODE和SVO等。
在三维建模领域里,细分曲面算是一个比较常见的术语了,经常用于动画角色的原型设计,甚至在工业设计领域,也开始流行用细分建模来进行原型设计。教科书里一讲到细分曲面,必然提一下《Geri's Game》,这部动画片里人物造型应用的就是细分曲面技术。
在Three.js的赋能下,WEB网页效果逐渐丰富起来,今天我们就来运用之前学习的Three.js基础知识,实现一个旋转的几何体-球体。
山西省政府办公厅印发了《关于促进全省煤炭绿色开采的意见》(简称《意见》),提出在确保安全的前提下,持续探索煤炭绿色开采技术路线,积极应用成熟技术,高标准建设不同类型的示范煤矿。
绘制三维图像 : 调用 plot3 函数 , 绘制三维图像 , 传入的三个参数是 x,y,z 轴变量 ;
一般分为深度图/视差图、点云、网格。它们都是表达3D信息的一种方式,会根据实际应用场景不同来选取不同的方式来表示。比如说做一些背景序化、人脸特效就可以只使用深度图就可以了;而如果我们要重建一个大型场景,如博物馆什么的,需要将其显示出来供大家浏览,可以使用网格来表示;而做定位的时候,我们只需要用点云就可以了。但是如果我们要制作点云或者网格,都必须要使用深度图,这一步是必须要经历的。有了深度图才可能得到点云或者是三维的网格。
智慧矿山是一个汇聚了多学科、多主题、多维空间信息的复杂系统,是在矿山地表和地下开采矿产资源的工程活动中所涉及的各种静、动态信息的全部数字化管理,智能分析,可视化展示,从而达到降本增效,实现企业利益的最大化。
当给你看一张椅子的照片时,你是可以从这张单幅照片中推断出椅子的三维形状的,即使你以前可能从未见过这样的椅子。我们经历的一个更具有代表性的例子是,在与椅子的物理空间相同时,从不同的角度收集信息,以建立我
论文地址:https://arxiv.org/pdf/2102.03725v2.pdf
代码地址:https://github.com/ShichenLiu/SoftRas
想象一下,如果你正在建造一辆自动驾驶汽车,它需要了解周围的环境。为了安全行驶,你的汽车该如何感知行人、骑车的人以及周围其它的车辆呢?你可能会想到用一个摄像头来满足这些需求,但实际上,这种做法似乎效果并不好:你面对的是一个三维的环境,相机拍摄会使你把它「压缩」成二维的图像,但最后你需要将二维图像恢复成真正关心的三维图像(比如你前方的行人或车辆与你的距离)。在相机将周围的三维场景压缩成二维图像的过程中,你会丢掉很多最重要的信息。试图恢复这些信息是很困难的,即使我们使用最先进的算法也很容易出错。
二维云图:要绘制二维云图,您可以使用scatter函数。这个函数可以根据给定的数据点在二维平面上绘制散点图,并可以使用不同的颜色和大小来表示每个数据点的属性。
去考虑看一张椅子的照片。即使我们以前从未见过这样的椅子,但我们人类有出色的能力,可以从这单张照片中推断出这张椅子的三维形状。可以证明人类经验主义的一个更具代表性的例子就是,我们和椅子共处于同一个物理空间中,并从不同的角度积累信息,在我们的脑海中可以组建起这个椅子的三维形状。这个复杂的二维到三维的推理任务,我们是怎样完成的?我们又是使用什么样的线索? 从仅有的几个视角,我们是怎样无缝整合这些信息并且建立一个整体的三维场景模型?
论文题目:BlendedMVS: A Large-scale Dataset for Generalized Multi-view Stereo Networks
近日,清华大学计图(Jittor)团队提出了一种针对三角网格的卷积神经网络,在两个网格分类数据集上首次取得100%正确率,在其他多个几何学习任务中,性能显著超过现有方法。
机器之心发布 清华大学计图团队 清华大学 Jittor 团队提出了一种基于细分结构的网格卷积网络 SubdivNet。该方法首先将输入网格进行重网格化(remesh),构造细分结构,得到一般网格的多分辨率表示,并提出了直观灵活的面片卷积方法、上 / 下采样方法,并将成熟的图像网络架构迁移到三维几何学习中。 近日,清华大学计图 (Jittor) 团队提出了一种针对三角网格的卷积神经网络,在两个网格分类数据集上首次取得 100% 正确率,在其他多个几何学习任务中,性能显著超过现有方法。 尤为重要的是,这种基于细
导语:本文提出一种用于深度三维形变模型中特征聚合的可学习模块。当前深度三维形变模型中特征聚合依赖于网格抽取等方法,存在聚合方式无法学习,与模型优化目标不一致等问题,从而限制了模型的表达能力。我们提出了使用基于注意力机制的模块实现对特征聚合方式的学习。在人脸,人体和人手数据集上的实验结果表明,基于注意力机制的特征聚合能有效提升模型的表达能力。
上次在文章ThreeJS中三维世界坐标转换成二维屏幕坐标介绍了三维二维坐标的转换方法,今天结合一个用例具体说下用法。
该paper是由普林斯顿大学3个英特尔实验室4个复旦大学数据科学学院以及5个腾讯人工智能实验室研究员合作的。来自于复旦大学计算机科学学院上海市智能信息处理重点实验室。该论文已经投中ECCV2018。
plot3是三维画图的基本函数,绘制的是最为主要的3D曲线图,最主要的调用格式是:
Gridding Residual Network for Dense Point Cloud Completion
Computational Geometry Algorithms Library,CGAL,计算几何算法库。使用C++语言编写的,提供高效、可控的算法库。广泛应用于计算几何相关领域,如地理信息系统、计算机图形学、计算机辅助设计、信息可视化系统、生物医学等。
文章:TCLC-GS: Tightly Coupled LiDAR-Camera Gaussian Splatting for Surrounding Autonomous Driving Scenes
---- 新智元报道 来源:专知 【新智元导读】来自南京大学和清华大学的最新研究论文《从单目图像中恢复三维人体网格》,提出了从而二维数据提升至三维网格过程中基于优化和基于回归的两种范式,第一次关注单目3D人体网格恢复任务的研究,并讨论了有待解决的问题和未来的发展方向。 从单目图像中估计人体的姿势和形状是计算机视觉领域中一个长期存在的问题。自统计学人体模型发布以来,三维人体网格恢复一直受到广泛关注。 为了获得有序的、符合物理规律的网格数据而开发了两种范式,以克服从二维到三维提升过程中的挑战:i)基于
PCL库中的geometry模块主要提供了点云几何计算的工具,geometry模块提供了点云和三维网格(mesh)处理的一些基本算法和数据结构。
本文主要从二维图像及其轮廓的集合中,学习一个自监督的、单视图的三维重建模型,预测目标物体的3D网格形状、纹理和相机位姿。提出的方法不需要3D监督、注释的关键点、物体的多视图或者一个先验的网格模板。关键之处在于,物体可以表示为可形变部分的集合,在同一类别的不同实例中,每个部分在语义上是一致的。
在Matlab中,三维图形有:三维曲线、三维网格以及三维曲面,分别对应函数:plot3、mesh和surf,本篇将介绍些常规使用以及一些三维图形的处理。
本文研究三维点云的标记问题。介绍了一种基于三维卷积神经网络的点云标记方法。我们的方法最大限度地减少了标记问题的先验知识,并且不像大多数以前的方法那样需要分割步骤或手工制作的特征。特别是,我们提出了在培训和测试过程中处理大数据的解决方案。在包含7类对象的城市点云数据集上进行的实验显示了我们应用程序的鲁棒性。
文章:Open3DGen: Open-Source Software for Reconstructing Textured 3D Models from RGB-D Images
專 欄 ❈PytLab,Python 中文社区专栏作者。主要从事科学计算与高性能计算领域的应用,主要语言为Python,C,C++。熟悉数值算法(最优化方法,蒙特卡洛算法等)与并行化 算法(MPI,OpenMP等多线程以及多进程并行化)以及python优化方法,经常使用C++给python写扩展。 blog:http://ipytlab.com github:https://github.com/PytLab ❈ 前言 最近在写文章需要绘制一些一维的能量曲线(energy profile)和抽象的二维和
2022年上半年,源自一个n线城市的三维城市可视化项目。但是建筑物数据是几乎是空白,问了几家公司费用数万,于是设计了geobuilding这款工具,解决了建筑物数据缺失的问题,保障了项目进度和交付任务。
Matplotlib 最初设计时只考虑了二维绘图。在 1.0 版本发布时,一些三维绘图工具构建在 Matplotlib 的二维显示之上,结果是一组方便(但是有限)的三维数据可视化工具。通过导入mplot3d工具包来启用三维绘图,它包含在主要的 Matplotlib 安装中:
领取专属 10元无门槛券
手把手带您无忧上云