第一章 Oracle列直方图介绍 众所周知 ,列的直方图主要用于针对数据倾斜的情况,能帮助数据库更准确的了解数据的分布情况,从而选择更高效的执行计划。 经过测试,直方图也是存在很多问题隐患的。...直方图中不同的记录方式也势必会对预估行数产生一定的影响。...采样比例的不同,对直方图可能造成预估行数的差异。...第四章 列宽过长导致的问题 对于文本型超过32位、数量型超过15位的列,直方图收集后都会产生一定的问题,从而导致可选择率的不准确问题。...从而造成了评估行数的不准确问题。 因此,对列宽过长的列(大于32个字符)收集直方图时,要注意其可能对可选择率造成的影响。
的布局, 给设置在父控件的中央center_inParent 第一个界面里面: 获取到EditText对象的值 获取Intent对象,调用new出来,...通过简便方式直接指定,参数:上下文,类字节码 调用Intent对象的putExtra(key,val)方法,传递数据,参数:键值对 调用startActivity(intent)方法,开启 第二个界面里面...: 获取Intent对象,调用getIntent()方法,获取到传递过来的Intent对象 调用Intent对象的getStringExtra(name)方法,获取传递的String,参数:键 获取Random...对象,new出来随机数对象 调用Random对象的nextInt(n),获取随机值,参数:int类型的最大值,0开始要减一 显示进度条,布局文件增加,设置最大值android...super.onCreate(savedInstanceState); setContentView(R.layout.activity_result); //获取展示数据
案例模拟文件下载 http://gofile.me/4KHV7/SUo5ywXxC 我们来分享下不同思路的处理方式。 先展示一下网友蜗牛给的答案。 (一) 通过分组后逆透视后再用透视还原来完成。...增加列判断归属,并向下填充。...通过转换得到错误的值并用错误值替换的方式来命名日期列的标题。...到这一步,分组内的计算完成。 3. 展开,重命名,调整数据类型 ? 4....展开数据,筛选并调整后即可得到最终结果。 ? 如果觉得有帮助,那麻烦您进行转发,让更多的人能够提高自身的工作效率。
在MySQL中如果两张表的字符排序集(Collate)不同(比如一张表为utf8mb4_general_ci, 另一张表为utf8mb4_unicode_ci),在连表查询时就可能会如下类似的错误:...collations (utf8mb4_general_ci,IMPLICIT) and (utf8mb4_unicode_ci,IMPLICIT) for operation '=' ### 可以通过如下语句修改表的字符排序集...: ALTER table table_name COLLATE=utf8mb4_general_ci; 不幸的是,即使改了之后还是会报错,原因是,该语句只能修改后续插入的数据,对于已存在的行记录则不会修改
最近,我发现学徒在学习GEO数据挖掘的过程中,遇到了第一个也是至关重要的一个难题就是对下载后的数据集进行合适的分组,因为只有对样本进行合适的分组,才有可能得到我们想要的信息。...但是不同的GSE数据集有不同的临床信息,那么我们应该挑选合适的临床信息来进行分组呢?...这里面涉及到两个问题,首先是能否看懂数据集配套的文章,从而达到正确的生物学意义的分组,其次能否通过R代码实现这个分组。同样的我也是安排学徒完成了部分任务并且总结出来了!...,逗号后为列 pd=pData(a) #通过查看说明书知道取对象a里的临床信息用pData pd就是这个数据集的临床信息,查看后如下 ?...,在不同的情况下选取最合适当下的方法,方便自己去做后续的数据分析。
前言 不同应用之间的传值可以使用以下几种方式: Intent传值:使用隐式Intent,但需要确保接收方应用可以响应该Intent。...Content Provider 通过Content Provider可以在不同的应用之间共享数据。...Intent传值 使用Intent在不同的应用之间传递数据,可以通过Intent的putExtra()方法添加数据,并通过startActivity()或startActivityForResult()...} } Content Provider Content Provider:通过Content Provider可以在不同的应用之间共享数据。...文件共享:两个应用之间可以通过文件共享的方式传递数据。
本篇文章目标是处理在数据集中存在列分隔符或分隔符的特殊场景。对于Pyspark开发人员来说,处理这种类型的数据集有时是一件令人头疼的事情,但无论如何都必须处理它。...从文件中读取数据并将数据放入内存后我们发现,最后一列数据在哪里,列年龄必须有一个整数数据类型,但是我们看到了一些其他的东西。这不是我们所期望的。一团糟,完全不匹配,不是吗?...答案是肯定的,确实一团糟。 现在,让我们来学习如何解决这个问题。 步骤2。...我们已经成功地将“|”分隔的列(“name”)数据分成两列。现在,数据更加干净,可以轻松地使用。...要验证数据转换,我们将把转换后的数据集写入CSV文件,然后使用read. CSV()方法读取它。
64mb #aof文件,至少超过64M时,重写 万一输入了flushall之后触发了重写机制,那么所有数据都会丢失,而正式环境redis数据是一直在写入的,数据量是一直在变大的,随时都有触发重写条件的可能...,所以得立即关机,如果正好在你执行flushall的下一秒 触发了aof重写机制,那么数据就永远无法恢复了。...appendonly no 我们先看一下当前redis的数据,并将数据用save命令固化到rdb文件中,我的rdb文件为/var/rdb/dump6379.rdb 杀掉当前redis的进程,否则下一步的复制....rdb),记住,一定要杀掉当前redis的进程,还有关闭要迁移的服务器的aof功能(如果不关闭aof,默认用aof文件来恢复数据) (5)启动6380的redis,我们会发现,6380多出了name的数据...,这个数据,就是6379固化到rdb的数据 以上就是在不同的redis之间进行rdb的数据迁移,思路就是,复制rdb文件,然后让要迁移的redis加载这个rdb文件就ok了
对数据库查询,将得到一个数据集: rs=AccessDB.GetData("select * from log where f_code='600259' limit 5,5") 结果的每行对应一个元组...数据集是一个游标,只能用一次,如果需要反复查询,可以转换为列表再操作。 ? 但是,如果只能通过逐行循环来处理,就和以前的程序没啥区别了。...我设定了一个小目标:合计一下第8列(金额),看Python能否有所不同。 尝试1:用map取出第8列,再用reduce合并。 ?...python的分支判断取值,有两种方式: 条件 and 真的取值 or 假的取值 真的取值 if 条件 else 假的取值 但第一种在真的取值为“假”时会错误,所以使用第二种。...第三种方法,以元组作为reduce的参数,传递进入后,通过类型判断解决第一次类型问题,还能再进一步扩展。
把数据集( dataset )的行或列映射为系列(series) 用户可以使用 seriesLayoutBy 配置项,改变图表对于行列的理解。...系列被安放到 dataset 的列上面。 ‘row’: 系列被安放到 dataset 的行上面。 把数据集( dataset )的行或列映射为系列(...{top: '55%'} ], series: [ // 这几个系列会在第一个直角坐标系中,每个系列对应到 dataset 的每一行..., {type: 'bar', seriesLayoutBy: 'row'}, // 这几个系列会在第二个直角坐标系中,每个系列对应到 dataset 的每一列
之前的一篇文章中,我们遇到了主从同步的一个问题,错误代码:1236,详细请看 开启GTID主从同步出现1236错误问题 今天,突然发现测试环境的主从同步关系断开了,报错代码:1677 一、问题错误信息...2、从库检查报错表的建表语句 ? 字符集为utf8mb4 在主库查看表的建表语句 ?...主库表的字符集为utf8 三、解决方法 root@localhost [3308][(none)]>stop slave; Query OK, 0 rows affected (0.00 sec)...四、小结 从上面的报错中,我们发现了主从同步报错的根本原因: 1.、在建表语句在没有显示的指定字符集的时候,会根据库的默认字符集建表,所以主库的表test_profile的字符集是utf8 2....、建表语句在没有指定字符集的时候,binlog里面也不会记录字符集格式,导致在从库新建表的时候根据库级别的字符集选择了utf8mb4的字符集,新增记录就报错了
“哈哈,我们在训练我们的模型并且希望得到更加准确的结果,但基于实际的情况(比如算力、时间),往往会按照一定策略来选择。...本文介绍了几种常见的数据集划分与交叉验证的方法策略以及它们的优缺点,主要包括了Train-test-split、k-fold cross-validation、Leave One Out Cross-validation...等,包括了代码层的实现与效果的比较,比较适合综合阅读一次。
简介 ECOREGIONS/2017是一个关于全球生物多样性的数据集,由世界自然基金会(World Wildlife Fund)和美国环境保护署(U.S....该数据集将全球陆地划分为867个生态区域,以反映不同地理和环境条件下的生物多样性。 每个生态区域都具有独特的生物组成和生态系统特征,这些特征反映了该地区的气候、土壤、植被等因素对生物多样性的影响。...ECOREGIONS/2017数据集使用了广泛的地理和生态数据源,包括陆地和水域的信息,以进行生态区划。...该数据集提供了各个生态区域的边界、名称以及详细的描述,包括主要的植被类型、动物群落、物种多样性等信息。此外,还提供了各个生态区域的面积、保护状况和关键的环境压力等指标。...ECOREGIONS/2017数据集的目的是帮助研究人员、保护管理者和决策者更好地了解全球生物多样性的分布和保护需求,以制定更有效的保护策略。
另外,Scaling law 的数据依赖性质仅仅是个理论问题,还是说对真实世界数据集也很重要?...为了探究这些问题,AI 数据公司 Reworkd 的研究者 Rohan Pandey 做了一番调查,得到了这些问题的答案;另外他还提出了一种压缩算法 gzip,可预测数据复杂性对扩展性质的影响。...实验中,通过调整 PCFG 的句法性质,他生成了 6 个具有不同复杂度的数据集。...对于每个数据集,他又训练了 6 个不同大小的语言模型(参数量从 4.4M 到 1.4B),并记录了这些语言模型在 6 种不同训练步数(100K 到 100M token)下的结果。...为了确定数据集的 Scaling law,该研究者在不同大小的数据子集(100K、1M、5M、20M、50M、100M token)上训练了几个不同大小(参数量为 4.2M、8.8M、20.3M、59.0M
这个问题挺有意思的,而且是一些多数据集整合算法或者 利用已知注释好的单细胞数据来注释新的单细胞未知细胞亚群数据的基础思想。...首先,来问问你的私人顾问人工智能大模型kimi kimi(https://kimi.moonshot.cn/):两个不同数据集的单细胞降维聚类分群结果如何对应?...在单细胞转录组学研究中,将两个不同数据集的降维聚类分群结果进行对应是一个常见的问题,尤其是在跨样本、跨物种或跨实验条件的研究中。以下是几种常用的方法来实现这种对应关系: 1....基于相似性度量的对应(Similarity Metrics) 如果两个数据集的细胞类型较为复杂,可以使用相似性度量(如Jaccard指数)来量化聚类之间的相似性。...操作步骤: 分别降维和聚类:对两个数据集分别进行降维和聚类。 计算相似性:计算两个数据集中聚类之间的相似性(如Jaccard指数)。 匹配聚类:根据相似性得分找到最匹配的聚类。
我们可以开始尝试分析一些文献的公共数据集啦,不过在处理那些数据的过程中,我们还需要传授给大家几个小技巧。...合并两个不同panel的cytof数据集 有一些情况下,你的同一个实验项目的多个FCS文件,它们的抗体顺序并不一致。...prepData(fs, panel, md, features = panel$fcs_colname) rowData(sce1)[,1] rowData(sce2)[,1] 可以看到,两个数据集的...SingleCellExperiment对象就包含了两个不同panel顺序的cytof数据集啦。...如果不仅仅是panel顺序不一样 panel本身也不一样,就比较麻烦了,不同的panel可能研究的生物学问题不一样,或许有批次效应等其它未知的混杂因素。 需要具体问题具体分析啦。
亚马逊已经创建并开源了一个数据集,用于训练AI模型以识别不同语言和脚本类型的名称,因此Alexa可以例如在英语发音者发音时理解日本艺术家或人的名字,反之亦然。...这被称为音译多语言命名实体音译系统,用于识别不同语言名称的工具基于在亚马逊从维基数据制作数据集之后创建的AI模型,用于填充维基百科的内容。...总之,该数据集包含近400000个阿拉伯语,英语,希伯来语,日语片假名和俄语等语言的名称。 研究结果已发表在Arxiv上,将于本月晚些时候在新墨西哥州圣达菲举行的国际计算语言学会议上分享。...例如,根据亚马逊博客文章,英语到俄语比希伯来语更容易理解,因为虽然它们不同,但英语和俄语的字母表比英语更像希伯来语。...在亚马逊宣布计划将Echo智能扬声器带到墨西哥的同时,亚马逊的语言理解也在受到欢迎,这是第一个讲西班牙语的拉丁美洲Echo扬声器。
降维聚类分群后,很容易根据文献里面的标记基因给出来各个亚群的生物学名字,然后对不同亚群,可以找这个数据集里面的特异性的各个亚群高表达量基因作为其标记基因: 特异性的各个亚群高表达量基因 接下来我就在思考...,这样的实验设计在非常多的单细胞数据集都可以看到,因为在小鼠模型里面取脑部进行单细胞测序是很多疾病的首选。...,参考前面的例子:人人都能学会的单细胞聚类分群注释,读入这个文章的GSE162610数据集,进行标准的seurat流程即可。...对GSE182803数据集进行同样的处理 可以看到: image-20220102164343172的降维聚类分群 这个数据集里面的 巨噬细胞和小胶质细胞也是很清晰的界限。...: 仍然是具有比较清晰的分界线 说明 巨噬细胞和小胶质细胞各自相对标记基因在不同数据集都是具有可区分能力的。
昨天,视频交流群里有朋友在问,类似这个要将多列数据规范化问题,用Power Query怎么处理: 对于大多数的日常应用问题,我前期的文章基本都涉及到,所以,我直接给了文章的参考...,具体链接为《多列数据归一化处理,不用写SQL,还能随数据增加一键刷新》。...很多朋友对Power Query还存在一些疑问,比如说有些操作不如在Excel里方便,或者说不知道该什么时候用Power Query,对此,大家可以参考一下这个意见: 接下来,针对前面的数据规范化问题...于是我赶紧整理出来供大家参考,具体代码及配套数据下载链接见文末。...配套数据下载链接 https://share.weiyun.com/5FDBf8k
领取专属 10元无门槛券
手把手带您无忧上云