一、Inception网络(google公司)——GoogLeNet网络的综述
获得高质量模型最保险的做法就是增加模型的深度(层数)或者是其宽度(层核或者神经元数),
但是这里一般设计思路的情况下会出现如下的缺陷...解决上述两个缺点的根本方法是将全连接甚至一般的卷积都转化为稀疏连接。为了打破网络对称性和提高
学习能力,传统的网络都使用了随机稀疏连接。...现在的问题是有没有一种方法,
既能保持网络结构的稀疏性,又能利用密集矩阵的高计算性能。...Inception的作用:代替人工确定卷积层中的过滤器类型或者确定是否需要创建卷积层和池化层,即:不需要人为的
决定使用哪个过滤器,是否需要池化层等,由网络自行决定这些参数,可以给网络添加所有可能值..., slim.conv2d, [(32, [3, 3]), (32, [1, 1]), (64, [3, 3]), (64, [1, 1])], scope='core')
(3)nets: 包含一些经典网络