感谢Liuruoze的EasyPR开源车牌识别系统。 EasyPR是一个中文的开源车牌识别系统,其目标是成为一个简单、灵活、准确的车牌识别引擎。...它能够识别中文,例如车牌为苏EUK722的图片,它可以准确地输出std:string类型的"苏EUK722"的结果。 它的识别率较高。目前情况下,字符识别已经可以达到90%以上的精度。...目录结构 以下表格是本工程中所有目录的解释: 目录 解释 src 所有源文件 include 所有头文件 test 测试程序 model 机器学习的模型 resources/text 中文字符映射表 resources...,是字符分割与字符鉴别功能的组合 plate_recognize 车牌识别,是车牌检测与字符识别的共有子类 feature 特征提取回调函数 plate 车牌抽象 core_func.h 共有的一些函数...train目录下文件的解释: 文件 解释 ann_train.cpp 训练二值化字符 annCh_train.hpp 训练中文灰度字符 svm_train.hpp 训练车牌判断 create_data.hpp
若python文件中出现中文字符,运行时会出现如下错误 SyntaxError: Non-ASCII character '\xd5' in file sort.py on line 2, but.../usr/bin/python #coding:utf-8 即可输出中文
一、模型构建 1.归类 2.判定 3.输出 二、代码实现 三、结果展示 ---- 前言 文本情感倾向性分析(也称为意见挖掘)是指识别和提取原素材中的主观信息,并对带有感情色彩的文本进行分析处理和归纳推理的过程
第二选了23个字训练了3000在字迹清晰下能够识别: ? 类似于默,鼠,鼓,这类文字也能识别,由于训练数据的问题,在测试的时候应尽量写在正中间 ?...中文手写数据集下载: 链接:https://pan.baidu.com/s/1DCDUGmSEtxyFpuxBKVqMnQ 提取码:zzos 项目完整python源代码下载:前去下载
https://sourceforge.net/projects/cmusphinx/files/Acoustic%20and%20Language%20Models/ 其中 Mandarin 为中文普通话...16k_ptm256_8000.tar.bz2 (需要解压) 语言模型:zh_broadcastnews_64000_utf8.DMP 拼音字典:zh_broadcastnews_utf8.dic 测试中文语音识别...首先准备一个中文音频文件(要求:.wav 格式,采样频率 16000HZ,单声道) 将下载的中文模型文件和解压后的 pocketsphinx 目录放到同一个目录下,这里假定就叫“中文语音识别”。...进入“中文语音识别”目录,然后运行下面的命令 pocketsphinx\bin\Release\x64\pocketsphinx_continuous.exe -hmm zh_broadcastnews_ptm256...dict zh_broadcastnews_utf8.dic -infile myfile-16000.wav > myfile.txt 运行完毕后,查看 myfile.txt 文件,内容即是程序识别出来的中文
简介 python在执行代码过程是不知道这个字符是什么意思的、是否是中文,而是把所有代码翻译成二进制也就是000111这种形式,机器可以看懂的语言。 也就是在计算机中所有的字符都是有数字来表示的。...汉字也是有数字表示的,Unicdoe4E00~9FFF表示中文,所以如果一个字符的utf-8编码在这个区间内,就说明它是中文。...中文编码对应表 GBK UTF16 UTF8 汉字 D2BB 4E00 E4 B8 80 一 B6A1 4E01 E4 B8 81 丁 C6DF 4E03 E4 B8 83 七 CDF2 4E07 E4...判断字符包含中文: def is_not_en_word(self, word:str): ''' 判断一个词是否是非英文词,只要包含一个中文,就认为是非英文词汇 :param...else: return False def is_en_mail(self, mail_text:str): ''' 判断一个词是否是非英文词,只要包含一个中文
前一篇博客说了一下怎么在 Windows 平台使用 pocketsphinx 做中文语音识别,今天看看在 Linux 上怎办实现。...模型文件下载地址 https://sourceforge.net/projects/cmusphinx/files/Acoustic and Language Models/ 其中 Mandarin 为中文普通话...16k_ptm256_8000.tar.bz2 (需要解压) 语言模型:zh_broadcastnews_64000_utf8.DMP 拼音字典:zh_broadcastnews_utf8.dic 测试中文语音识别...首先准备一个中文音频文件(要求:.wav 格式,采样频率 16000HZ,单声道) 将下载的中文模型文件和解压后的 pocketsphinx 目录放到同一个目录下,这里假定就叫 “test”。...-dict zh_broadcastnews_utf8.dic -infile myfile-16000.wav > myfile.txt 运行完毕后,查看 myfile.txt 文件,内容即是程序识别出来的中文
PPASR语音识别(入门级) 本项目将分三个阶段分支,分别是入门级、进阶级和应用级分支,当前为入门级,随着级别的提升,识别准确率也随之提升,也更适合实际项目使用,敬请关注!...PPASR基于PaddlePaddle2实现的端到端自动语音识别,本项目最大的特点简单,在保证准确率不低的情况下,项目尽量做得浅显易懂,能够让每个想入门语音识别的开发者都能够轻松上手。...在传统的语音识别的模型中,我们对语音模型进行训练之前,往往都要将文本与语音进行严格的对齐操作。...每一行数据包含该语音文件的相对路径和该语音文件对应的中文文本,要注意的是该中文文本只能包含纯中文,不能包含标点符号、阿拉伯数字以及英文字母。...我们可以使用这个脚本使用模型进行预测,通过传递音频文件的路径进行识别。
string = string.encode(‘utf-8’)
最近在做一个关于中文大段文本中的手机号码识别,由于属于对抗性的一个文本,发现传统的手机号码识别方法,比如正则匹配并不是很适用。
Doi技术团队 链接地址:https://blog.doiduoyi.com/authors/1584446358138 初心:记录优秀的Doi技术团队学习经历 本文链接:基于Pytorch实现的MASR中文语音识别...MASR是一个基于端到端的深度神经网络的中文普通话语音识别项目,本项目是基于masr 进行开发的。...以下用字错误率CER来衡量模型的表现,CER = 编辑距离 / 句子长度,越低越好,大致可以理解为 1 - CER 就是识别准确率。...每一行数据包含该语音文件的相对路径和该语音文件对应的中文文本,要注意的是该中文文本只能包含纯中文,不能包含标点符号、阿拉伯数字以及英文字母。 生成训练的数据列表和数据字典。...infer_path.py,实时录音识别infer_record.py和提供HTTP接口识别infer_server.py,他们的公共参数model_path训练保存的模型路径,lm_path为语言模型路径
MASR是一个基于端到端的深度神经网络的中文普通话语音识别项目,本项目是基于masr 进行开发的。...以下用字错误率CER来衡量模型的表现,CER = 编辑距离 / 句子长度,越低越好,大致可以理解为 1 - CER 就是识别准确率。...每一行数据包含该语音文件的相对路径和该语音文件对应的中文文本,要注意的是该中文文本只能包含纯中文,不能包含标点符号、阿拉伯数字以及英文字母。...infer_path.py,实时录音识别infer_record.py和提供HTTP接口识别infer_server.py,他们的公共参数model_path训练保存的模型路径,lm_path为语言模型路径...infer_path.py的参数wav_path为语音识别的的音频路径。infer_record.py的参数record_time为录音时间。
素来被认为是“人脸识别独角兽”——或者更宽泛一点说,“计算机视觉独角兽”的依图科技,公布了他们中文语音识别技术的最新突破,以及令人瞩目的产业布局。...智能语音竞争还未开始,依图要做世界最好的中文语音识别 万物互联,语音为先。 语音识别是AI理解世界最重要的组成部分,也是AI能听会说善理解的必要条件。...此次依图科技在语音识别技术方面的突破,不仅意味着依图首次涉足语音识别领域便已经跻身中文语音识别第一阵营,同时也说明语音识别在技术层面还有足够的进化空间,远远没有达到“超越人类”。...依图此次推出的中文语音识别算法,与业内原有领先者相比,不仅大幅提升了识别准确率,而且在单个算法模型上,有极为出色的多场景适用性表现。...一般认为,中文语音识别的字错率低于3%时不会影响可读性,而超过15%则毫无可读性。这是语音识别的两条红线,在不同场景下,不同算法的表现可能会有很大差异。
Tesseract-OCR介绍 开源的OCR识别引擎,高版本识别基于LSTM,其整个处理流程如下: ?...=Output.STRING, timeout=0, ) 返回所有识别文字的Box框坐标,每一行为一个BOX信息输出 每行的前五个值分别是,识别的字符、BOX框的左上角与右下角坐标 识别 def...必输入的参数是image,其它可选 英文与数字识别 Tesseract-OCR默认支持英文与数字识别,有输入图像如下: ?...中文识别 默认情况下Tesseract-OCR不支持中文识别,需要下载中文识别的模型文件,然后放置到安装路径的tessdata目录下: C:\Program Files\Tesseract-OCR\tessdata...其中chi_sim表示中文简体支持,eng表示英文支持! 以下图为例: ?
0x02 验证码识别 对于这种简单的点选验证码,可以有两种很容易的识别方式(机器学习算麻烦的,这里就不列出了。嗯,对,我也不会)。一种是opencv的图像模板匹配,另外一种是OCR识别。...所以就换另外一种识别方式-ocr 识别。...2.OCR识别 这里采用的是腾讯云的OCR-通用印刷体识别(https://cloud.tencent.com/document/product/866/17600)。 参考文档。...0X03 总结 本文用了两种方法来自动识别汉字点选验证码,第一种采用的是opencv的模板匹配,这种方法虽然也可以匹配到,但这种方法缺点就是对于字体形状差异较大的验证码识别率较低。...这时候就要用到机器学习了,而本文只是简单的“识别”,将机器学习用到这里,就有些大材小用了。
本文记录使用 Python pypinyin 库获取中文声调拼音的方法。 pypinyin 将汉字转为拼音。可以用于汉字注音、排序、检索 。 特性 根据词组智能匹配最正确的拼音。 支持多音字。...安装 1 pip install pypinyin 使用 引入库 12 import pypinyinfrom pypinyin import pinyin 基础用法 向 pinyin 方法输入中文字符...,可以自动识别多音字音调。...[','], ['xiào'], ['lǜ'], ['yí'], ['xiàng'], ['hěn'], ['gāo']] 多音字 在 pinyin 方法中加入参数 heteronym=True 识别多音字
通过拍摄的包含车牌的照片,实现识别出车牌文字的功能,能够大大提高车辆识别效率,在交通违规检测、罪案侦查中能提供有力支持,而 EasyPR,能够快速准确地识别中文车牌。...◆ 简介 EasyPR,是 liuruoze 在 Gitee 上开源的中文车牌识别系统,仓库位于 https://gitee.com/liuruoze/EasyPR,目前版本为 1.6。...相比于其他的车牌识别系统,EasyPR有如下特点: 它基于openCV这个开源库。这意味着你可以获取全部源代码,并且移植到opencv支持的所有平台。 它能够识别中文。...◆ 总结 EasyPR 作为一个中文车牌识别系统,目标是成为一个简单、高效、准确的非限制场景 (unconstrained situation) 下的车牌识别库。...EasyPR 基于openCV,能够识别中文,且识别率较高,可以应用在实践中。 来源: https://www.toutiao.com/article/7084857257946579464/?
前言本项目说是使用Keras,但使用的都是Tensorflow下的keras接口,本项目主要是用于声纹识别,也有人称为说话人识别。本项目包括了自定义数据集的训练,声纹对比,和声纹识别。...源码地址:VoiceprintRecognition-Keras使用环境:Python 3.7Tensorflow 2.3.0模型下载数据集类别数量下载地址中文语音语料数据集3242点击下载更大数据集6235...创建数据本教程笔者使用的是中文语音语料数据集 ,这个数据集一共有3242个人的语音数据,有1130000+条语音数据。...在create_data.py写下以下代码,因为中文语音语料数据集 这个数据集是mp3格式的,作者发现这种格式读取速度很慢,所以笔者把全部的mp3格式的音频转换为wav格式,在创建数据列表之后,可能有些数据的是错误的...有了上面的声纹识别的函数,读者可以根据自己项目的需求完成声纹识别的方式,例如笔者下面提供的是通过录音来完成声纹识别。
四、 中文命名实体识别 新建Java项目,将data目录拷贝到项目根路径下,再把stanford-ner-2012-11-11-chinese解压的内容全部拷贝到classifiers文件夹下,...importedu.stanford.nlp.ling.CoreLabel; /* * ClassNameZH_SegDemo * Description 使用StanfordCoreNLP进行中文实体识别
关于中文的识别,效果比较好而且开源的应该就是Tesseract-OCR了,所以自己亲身试用一下,分享到博客让有同样兴趣的人少走弯路。 文中所用到的身份证图片资源是百度找的,如有侵权可联系我删除。...一、准备工作 1、下载Tesseract-OCR引擎,注意要3.0以上才支持中文哦,按照提示安装就行。 2、下载chi_sim.traindata字库。要有这个才能识别中文。...二、识别 1、进入cmd,进入到要识别的图片的路径下。...2、输入命令 1 tesseract 图片名称 生成的结果文件的名称 字库 例如我的图片识别就是: 1 tesseract test.jpg result -l chi_sim 识别完后会生成result.txt...,报的错跟实际上完全没有相关性,不知道是不是bug,到后面的结果就是“园”字没有识别出来。
领取专属 10元无门槛券
手把手带您无忧上云