前言 前段时间小编收到一份测试任务要求对搜狗输入法的语音功能进行评测。评测任务主要拆分为评测语料的选取和整理,硬件的调研和采购,评测工具的开发以及评测的执行和结果整理。...小编负责评测工具服务端的开发工作,主要使用了websocket的技术,此次与大家做一个简单的分享。 评测过程 语音的评测过程中由web端连接音响实现语音的播放功能,手机客户端接收语音并处理。...评测过程会逐条播放音频,每一条音频播放后web端需要知道每个手机客户端的状态(是否语音处理完毕,是否准备好接收下一条语音等等),以此来决定何时开始播放下一条音频;同理客户端也需要实时接收到web端的播放状态...整个评测过程中web端和客户端需要频繁通信,所以我们需要选择一个合适的通讯技术以保证效率和质量。...在本次评测过程中由于客户端与服务端通信频繁,且对实时性要求较高,开始便考虑使用长连接的方式。
一、引言 小编新接触语音SDK项目,SDK无UI、底层调用多个C++算法库、提供的是AI服务。语音AI项目,识别效果是至关重要的一环,识别效果评测也是一项测试重点。...希望对测试小伙伴有所帮助~~(●—●) 二、ASR流程、系统结构、评测指标及评测模型 1、语音识别(Automatic Speech Recognition,ASR) 语音识别,也被称自动语音识别,所要解决的问题是让机器能够...4、语音识别(ASR)评测指标 语音识别(ASR)评测指标:WER(字错误率)和SER(句错误率) (1)....音量(分贝值大 小 时大时小) (7). 语音方式(哼唱 断断续续 正常说话 咬字不清) (8). 语速(快 中等 慢 时快时慢) (9)....1、ASR评测方案设计——确定测试场景(简单举例) 考虑评测的各种影响因素,需要先确定某些维度(下例),制定一个测试场景评测: 确定:语种分类(普通话)、声音来源(人声录音)、对话方式(单人)、语音内容
TTS的实现涉及语言学、语音学的诸多复杂知识,因实现细节的不同,TTS系统合成的语音在准确性、自然度、清晰度、连贯性等方面也有着不一样的表现,如何从多维度评价TTS系统质量成了TTS测试人员的一大挑战。...中文在实际口语发音时,存在一系列复杂的的变调规则,如一/不变调,上声变调等。这类规则的处理不当会导致合成的语音与平时发音习惯不符,听来怪异。 3、韵律异常。...在合成语音过程中引入背景噪声、字词间隔不顺畅。 二、客观评测 针对前后端可能存在的问题,本评测方法选择如下语料和指标对TTS系统做客观评测。...,准备测试语料,包括语料文本,待检查词汇,标准发音等,合成语音后人工评测发音准确率。...三、主观评测 1、MOS评测 国际上对语音自然度的评测,一般是使用MOS评测,邀请听音人对被测系统输出语音打分衡量。
中文分词操作是中文信息处理的第一站,中文分词效果的好坏直接影响后续自然语言处理任务。...c 中文分词中P、R、F1的计算 由于F1值的本质就是计算精准率P和召回率R的调和平均值,因此有了精准率和召回率,自然可以求出F1值,因此接下来主要介绍如何计算中文分词的精准率和召回率。...前面介绍的混淆矩阵是由分类问题引出的,并且真实的样本个数和预测的样本个数相等,而中文分词是一个分块任务(chunking),并且标准答案的分词和中文分词算法预测分词结果的单词数不一定相等,以"结婚的和尚未结婚的...如果想要计算中文分词中的精准率和召回率需要解决两个问题: 如何将中文分词的分块问题转换为分类问题? 如何将转换为分类问题的中文分词映射到混淆矩阵中,进而求出精准率和召回率?...综上,中文分词下的精准率和召回率的计算公式如下: 依然以"结婚的和尚未结婚的"为例,计算在中文分词下的精准率、召回率以及F1值。
围绕小程序 / 公众号 H5 / 视频号/企业微信等微信场景下的节日大促、直播带货、整点「秒杀」等营销活动,已成为众多电商、新零售企业获客转化的新标配。...微信云开发营销大促一站式解决方案 腾讯云推出微信云开发营销大促一站式解决方案,结合腾讯云微搭低代码、云函数、云开发、云托管等多种产品能力,并搭载微信安全网关、风控、私有链路等安全服务,从低码开发到测试上线
笔者使用中文普通话进行了一轮评测,识别效果超出我的预期。除了PC端使用场景有限,识别效果仍不够完善,最大的问题是:得访问外国网站。下面是一个简单评测。...这也是其与移动版Chrome的语音搜索和百度语音搜索一大不同。 7、Case1、较为标准的普通话:阿里巴巴的创始人是谁?准确识别,答案为马云。...如果不访问外国网站,别说语音搜索,访问Google也会经常出现大家熟悉的界面。 评测总结: Google语音搜索对于中文用户来说具备可用性。...语音输入除了声音转换为文字外,搜索引擎更需要从自然语言精准理解用户需求,并以知识图谱的形式反馈个性化的结果。从评测看,Google表现优秀。...其身在墙外,但对中文语音和语义识别能力,超出预期。 期待Google语音搜索接下来有两个进展。
2020接近尾声 不要因此留下遗憾 年终一定要满载而归 来DNSPod注册域名 一大波福利折扣等着你 还有全网域名独家特惠哦! 不要再错过啦! ???...本中心还拥有两大独立腾讯子品牌:DNSPod与Discuz!,在过去15年间,为超过500万企业级客户提供了强大、优质、稳定的IT服务。
同时,由于中文语法纠错任务相对复杂、各评测任务以及各数据集之间存在差异,在一定程度上限制了语法纠错的发展。...我们依托第二十一届中国计算语言学大会(CCL 2022),组织中文语法纠错评测。...本次评测既整合了已有的相关评测数据和任务,又有新开发的数据集,以设置多赛道、统一入口的方式开展比赛任务,同时,我们研制了各赛道具有可比性的评测指标,立足于构建中文语法纠错任务的基准评测框架。...判定为“音近”或“形近”或“形音兼近”的依据来自相关的汉语语音学、文字学理论及对外汉语教学理论。标注过程采用多人标注再由专家审核的方式以保证标注质量。 赛道二提供CGED-8数据集。...3) 如果当前句子有多种修改方式(假设 n 种),那么我们对每个修改方式都抽取一个编辑集合,将预测编辑集合与所有正确编辑集合对比,选取尽可能大的F0.5指标作为当前句子的指标。
未标题-1.png 概述 腾讯云智聆口语评测(英文版)(Smart Oral Evaluation-English,SOE-E)是腾讯云推出的语音评测产品,是基于英语口语类教育培训场景和腾讯云的语音处理技术...,应用特征提取、声学模型和语音识别算法,为儿童和成人提供高准确度的英语口语发音评测。...腾讯云智聆口语评测(英文版)支持单词和句子模式的评测,多维度反馈口语表现,可广泛应用于英语口语类教学应用中。...默认值 InitUrl String 初始化接口地址 是 无 TransUrl String 评分接口地址 是 无 WorkMode Integer 上传方式:语音输入模式
基于微信生态下的获客转化成为众多电商、新零售等企业的主战场之一,基于小程序 / 公众号 H5 / 视频号等微信场景下的节日大促、直播带货、整点「秒杀」等营销活动,再通过企业微信搭建私域用户流量池,早已成为众多电商...更低成本 活动大促专属资源包服务配置,实用实收,降低核心服务资源投入。 02....GitHub: github.com/serverless 官网: cloud.tencent.com/product/serverless-catalog 点击「阅读原文」,了解更多营销大促一站式解决方案详情
来源:魔镜市场情报 公众号后台回复: 报告 获取源文件 欢迎添加本站微信:datajh (可上下滑动或点单个图片放大左右滑动查看)
《如何评测语音技能的智能程度》是5篇系列文字,来自一位创业者,也是DuerOS开发者的投稿,老曹尽量不做变动和评价,尽量保持系列文章的原貌,这是第2篇。 “你是做什么行业的?”...在前面一篇文章里笔者曾经提到过:“市面上,例如腾讯叮当、小爱同学、天猫精灵、小度音箱这类大生态的集合的处理方案,属于最大的开放域。”...故而SIRI的未来,定位一定是基于苹果的大生态,做一个向用户提供SP和CP的连接器。它是中介,提供的服务能力是,帮助用户寻找CP和SP。...经历过功能机年代的人都知道,那个年代实体键盘占据屏幕的一大部分,而当前的手机键盘仅仅在需要出现的时候出现,类似的例子实在是太多了。 故而内容展示的合理程度,也应该成为一个评测标准。...以上,关于第二大维度【服务提供】的考量部分,就此完结。
Tech 导读 弹窗作为非常重要的营销触达手段被各业务广泛应用,本文主要介绍 “XView 营销弹窗搭投系统” 关于快速搭建、投放配置营销弹窗能力的实现原理,以及在 618 等重要大促场景中的应用和实践...618 大促来了,对于业务团队来说,最重要的事情莫过于各种大促营销。如会场、直播带货、频道内营销等等。...而弹窗作为一个极其重要的强触达营销工具,通常用来渲染大促氛围、引流主会场、以及通过频道活动来提升频道复访等。...通过以上分类的梳理,从业务视角来看,功能性的弹窗在大促中的重要性是其次的,而主要是营销类的弹窗,它们往往具备以下特点: 突发创意/需求:偶然的创意玩法,或突发的外部业务需求,时效性要求高,即上线时间不可逾期...4.搭建设计器中配置输出变量与组件属性的绑定关系 在上图案例中,通过接口的编排和配置,XView 将图中所示 “接口1” 作为数据源,此接口输出标准化命名的变量,让搭建设计器可以识别变量的意义并展示为中文提示
《如何评测语音技能的智能程度》是5篇系列文字,来自一位创业者,也是DuerOS开发者的投稿,老曹尽量不做变动和评价,尽量保持系列文章的原貌,这是第1篇。...所以我们干脆模块化一些,笔者就智能语音助理这一产品有如下四个大的评判维度。 它们依次是【意图理解】、【服务提供】、【交互流畅】、【人格特质】。 ?...不过多举例,但是有无处理方案,应该纳入进评测点。 【意图理解】(5)目标达成表现 核心考量点:帮助用户达成目标中间所花费的成本。...所以在当前的技术实现下,输出了过往在工作中一些评测产品以及处理问题的具体表现。 实际上,原本在意图理解这个单元模块,有更多评测点去列举,但是受限于篇幅以及能力所限,删掉的一些内容。...以上,关于本文第一大模块【意图理解】的部分,就此完结。
《如何评测语音技能的智能程度》是5篇系列文字,来自一位创业者,也是DuerOS开发者的投稿,老曹尽量不做变动和评价,尽量保持系列文章的原貌,这是第3篇。...稳定不好,这类问题可大可小,小点就是网络繁忙,不给你任何反馈,大到极致,机器人可以反动搞事情,“愚蠢的人类啊,阿西莫夫的机器人三定律也救不了你们。” ? 好了,开个玩笑。...体验各家智能语音助手,在这一块的表现上各不一致,故而列为评测点。 行业新的新手引导教学其实非常多的种类,滑屏海报,蒙版遮罩,文字tips,互动式引导。...同样的,在【交互流畅】这个单元模块,有更多评测点去列举,但是受限于篇幅以及能力所限,删掉的一些内容。保留以及删除评测点的原则,也是基于评测指标的普适性。 同样用提问的方式,列举一下我删除掉的考核点。...如果这个维度的评测方向如果处理不好,将全程伤害体验。 以上,关于第三大维度【交互流畅】的诸多考量点,就此完结。
智源指数简介 http://cuge.baai.ac.cn/#/ 智源指数是指中文语言理解和生成评测基准,智源指数包含高质量中文自然语言处理数据集、排行榜与在线评测平台,旨在构建全面系统的中文机器语言能力评测体系...,形成多层次维度的评测方案,力求更加科学、规范、高质量地推进中文自然语言处理技术的标准评测。...智源指数根据标准基线模型(mT5-small)的得分,对参与评测模型的得分进行归一化(括号中显示),最大程度消除不同数据集和评测指标的差异。...主要任务包括: 语言理解-词句级:中文分词、中文分词和词性标注、古诗文标记、命名实体识别、实体关系抽取 语言理解-篇章级:幽默检测、故事情节完形填空、阅读理解 信息获取及问答:反向词典、开放域问答、文档检索...登录个人账号后即可在参与评测页面提交。
现有的评测基准往往在标注数据时「仅限于句子级别的幻觉,而在关键词级别的标注粒度较少」。然而,从不同粒度上对大语言模型的分辨能力进行评测不仅更具挑战性,而且可以为解决幻觉问题提供新的启示。...大多数评测基准主要集中在英语幻觉上,「而中文幻觉评测数据集较少」。...UHGEVAL基准数据集 为了应对上述挑战,本文作者提出了一种新的幻觉评测基准UHGEval,一个全面的中文专业生成领域的幻觉评测基准。...其中,3个来自GPT系列的模型,GPT3.5-Turbo,GPT4-0613和GPT4-1106;以及8个中文大语言模型,ChatGLM2-6B,Xinyu-7B,Xinyu2-70B,InternLM...3.4 结果分析 文章使用三个不同的评测器,对11个大模型展开了详尽的实验分析,如下表所示。 同时也分析了不同新闻类型导致幻觉的差异性,如表6所示。
本文回顾了自然语言处理中的评测基准与指标,将大语言模型评估分为经典和新型评测范式,分析了现有评测的不足。接着介绍了全面的大语言模型评测思想、相关指标和方法,并总结了当前广受关注的大语言模型评测新方向。...为了全面评估大语言模型,可以将多个数据集聚合和重新组织,形成一个更通用的评测基准。本章针对大语言模型的评估对评测范式进行了分类,将其分为经典评测范式和新型评测范式。表1列出了一些典型的评测基准。...在中文信息处理方面,CLUE是一个大规模的中文理解评测基准,包含文本分类、阅读理解、自然语言推理等多个中文自然语言理解任务和一个诊断评估数据集。...2 全面的大语言模型评测 HELM是Liang等人提出的一种全面评估大语言模型的方法,适用于多个场景、任务和评估指标。它筛选出应用性的任务作为评测重点,并选择部分主要评测数据。...更可靠的评测方法:进一步发展更加可靠的基于模型的评测方法,增强评测结果的可信度。 知识增强的评测方法:探索将特定知识注入到大语言模型中的方法,从而提高基于大语言模型的评测方法在某些专业领域的表现。
为了准确和公正地评估大模型的能力,国内外机构在大模型评测上开展了大量的尝试和探索。斯坦福大学提出了较为系统的评测框架HELM,从准确性,安全性,鲁棒性和公平性等维度开展模型评测。...在中文评测方面,国内的学术机构也提出了如CLUE,CUGE等评测数据集,从文本分类,阅读理解,逻辑推理等方面评测语言模型的中文能力。...OpenCompass提供分布式自动化的评测系统,支持对(语言/多模态)大模型开展全面系统的能力评估。 OpenCompass介绍 评测对象 本算法库的主要评测对象为语言大模型与多模态大模型。...我们以语言大模型为例介绍评测的具体模型类型。...OpenCompass采取的主观评测方案是指借助受试者的主观判断对具有对话能力的大语言模型进行能力评测。
开源大模型评测排行榜 https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard 其数据是由其后端lm-evaluation-harness...更加详细的评测教程。 CMMLU https://github.com/haonan-li/CMMLU CMMLU是一个综合性的中文评估基准,专门用于评估语言模型在中文语境下的知识和推理能力。...CMMLU 是一个包含了 67 个主题的中文评测数据集,涉及自然科学、社会科学、工程、人文、以及常识等,有效地评估了大模型在中文知识储备和语言理解上的能力。...SuperCLUE https://github.com/CLUEbenchmark/SuperCLUE SuperCLUE是一个综合性大模型评测基准,本次评测主要聚焦于大模型的四个能力象限,包括语言理解与生成...同时评测分为两部分,自动化评测的客观题部分和依赖于专家打分的主观题部分,这两部分结果构成了最终的分数,您可以通过构建示例中的脚本快速对一个已部署的大模型进行评测,或者向我们提交您需要评测的模型的主观题预测结果
领取专属 10元无门槛券
手把手带您无忧上云