首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

为什么一个操作需要多个作业才能在spark - scala中完成

在Spark - Scala中,一个操作需要多个作业才能完成的原因是因为Spark的计算模型是基于分布式数据集(RDD)的。RDD是Spark的核心抽象,它代表了一个可分区、可并行计算的数据集合。

当我们在Spark中执行一个操作时,例如对一个RDD进行转换或行动操作,Spark会将这个操作分解为多个阶段,每个阶段包含一个或多个任务。每个任务会在集群中的不同节点上并行执行,以实现高效的计算。

具体而言,一个操作需要多个作业才能完成的原因如下:

  1. 依赖关系:Spark中的转换操作是惰性求值的,即在执行行动操作之前,转换操作不会立即执行。当我们对一个RDD进行转换操作时,Spark会记录下这个转换操作的依赖关系,而不会立即执行转换操作。当执行行动操作时,Spark会根据依赖关系自动构建作业图,将转换操作划分为多个阶段和任务。
  2. 数据分区:RDD是分区的,即数据集被划分为多个逻辑分区,每个分区存储在集群中的不同节点上。当执行转换操作时,Spark会根据数据的分区情况将转换操作划分为多个任务,并将任务分发到相应的节点上并行执行。每个任务只处理自己负责的分区数据,从而实现了数据的并行处理。
  3. 容错性:Spark具有容错性,即当集群中的某个节点发生故障时,Spark可以自动恢复计算过程。为了实现容错性,Spark会将每个转换操作划分为多个阶段和任务,并在每个任务执行时记录相关的元数据信息。当节点发生故障时,Spark可以根据元数据信息重新计算丢失的任务,从而保证计算的正确性和完整性。

综上所述,一个操作需要多个作业才能在Spark - Scala中完成是因为Spark的计算模型是基于分布式数据集的,并且为了实现高效的并行计算、容错性和数据分区,Spark将操作划分为多个阶段和任务进行执行。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Spark优化(二)----资源调优、并行度调优

在开发完Spark作业之后,就该为作业配置合适的资源了。Spark的资源参数,基本都可以在spark-submit命令中作为参数设置。很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置。资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢;或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常。总之,无论是哪种情况,都会导致Spark作业的运行效率低下,甚至根本无法运行。因此我们必须对Spark作业的资源使用原理有一个清晰的认识,并知道在Spark作业运行过程中,有哪些资源参数是可以设置的,以及如何设置合适的参数值。

02
  • 大数据开发岗面试复习30天冲刺 - 日积月累,每日五题【Day25】——Spark12

    1)原理: 计算能力调度器支持多个队列,每个队列可配置一定的资源量,每个队列采用 FIFO 调度策略,为了防止同一个用户的作业独占队列中的资源,该调度器会对 同一用户提交的作业所占资源量进行限定。调度时,首先按以下策略选择一个合适队列:计算每个队列中正在运行的任务数与其应该分得的计算资源之间的 比值(即比较空闲的队列),选择一个该比值最小的队列;然后按以下策略选择该队列中一个作业:按照作业优先级和提交时间顺序选择, 同时考虑用户资源量限制和内存限制 2)优点: (1)计算能力保证。支持多个队列,某个作业可被提交到某一个队列中。每个队列会配置一定比例的计算资源,且所有提交到队列中的作业 共享该队列中的资源; (2)灵活性。空闲资源会被分配给那些未达到资源使用上限的队列,当某个未达到资源的队列需要资源时,一旦出现空闲资源资源,便会分配给他们; (3)支持优先级。队列支持作业优先级调度(默认是FIFO); (4)多重租赁。综合考虑多种约束防止单个作业、用户或者队列独占队列或者集群中的资源; (5)基于资源的调度。支持资源密集型作业,允许作业使用的资源量高于默认值,进而可容纳不同资源需求的作业。不过,当前仅支持内存资源的调度。

    04

    大数据技术之_19_Spark学习_07_Spark 性能调优 + 数据倾斜调优 + 运行资源调优 + 程序开发调优 + Shuffle 调优 + GC 调优 + Spark 企业应用案例

    每一台 host 上面可以并行 N 个 worker,每一个 worker 下面可以并行 M 个 executor,task 们会被分配到 executor 上面去执行。stage 指的是一组并行运行的 task,stage 内部是不能出现 shuffle 的,因为 shuffle 就像篱笆一样阻止了并行 task 的运行,遇到 shuffle 就意味着到了 stage 的边界。   CPU 的 core 数量,每个 executor 可以占用一个或多个 core,可以通过观察 CPU 的使用率变化来了解计算资源的使用情况,例如,很常见的一种浪费是一个 executor 占用了多个 core,但是总的 CPU 使用率却不高(因为一个 executor 并不总能充分利用多核的能力),这个时候可以考虑让一个 executor 占用更少的 core,同时 worker 下面增加更多的 executor,或者一台 host 上面增加更多的 worker 来增加并行执行的 executor 的数量,从而增加 CPU 利用率。但是增加 executor 的时候需要考虑好内存消耗,因为一台机器的内存分配给越多的 executor,每个 executor 的内存就越小,以致出现过多的数据 spill over 甚至 out of memory 的情况。   partition 和 parallelism,partition 指的就是数据分片的数量,每一次 task 只能处理一个 partition 的数据,这个值太小了会导致每片数据量太大,导致内存压力,或者诸多 executor 的计算能力无法利用充分;但是如果太大了则会导致分片太多,执行效率降低。在执行 action 类型操作的时候(比如各种 reduce 操作),partition 的数量会选择 parent RDD 中最大的那一个。而 parallelism 则指的是在 RDD 进行 reduce 类操作的时候,默认返回数据的 paritition 数量(而在进行 map 类操作的时候,partition 数量通常取自 parent RDD 中较大的一个,而且也不会涉及 shuffle,因此这个 parallelism 的参数没有影响)。所以说,这两个概念密切相关,都是涉及到数据分片的,作用方式其实是统一的。通过 spark.default.parallelism 可以设置默认的分片数量,而很多 RDD 的操作都可以指定一个 partition 参数来显式控制具体的分片数量。   看这样几个例子:   (1)实践中跑的 Spark job,有的特别慢,查看 CPU 利用率很低,可以尝试减少每个 executor 占用 CPU core 的数量,增加并行的 executor 数量,同时配合增加分片,整体上增加了 CPU 的利用率,加快数据处理速度。   (2)发现某 job 很容易发生内存溢出,我们就增大分片数量,从而减少了每片数据的规模,同时还减少并行的 executor 数量,这样相同的内存资源分配给数量更少的 executor,相当于增加了每个 task 的内存分配,这样运行速度可能慢了些,但是总比 OOM 强。   (3)数据量特别少,有大量的小文件生成,就减少文件分片,没必要创建那么多 task,这种情况,如果只是最原始的 input 比较小,一般都能被注意到;但是,如果是在运算过程中,比如应用某个 reduceBy 或者某个 filter 以后,数据大量减少,这种低效情况就很少被留意到。   最后再补充一点,随着参数和配置的变化,性能的瓶颈是变化的,在分析问题的时候不要忘记。例如在每台机器上部署的 executor 数量增加的时候,性能一开始是增加的,同时也观察到 CPU 的平均使用率在增加;但是随着单台机器上的 executor 越来越多,性能下降了,因为随着 executor 的数量增加,被分配到每个 executor 的内存数量减小,在内存里直接操作的越来越少,spill over 到磁盘上的数据越来越多,自然性能就变差了。   下面给这样一个直观的例子,当前总的 cpu 利用率并不高:

    02
    领券