首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

为什么变分自动编码器在许多实现中的损失与论文中的符号相反?

变分自动编码器(Variational Autoencoder,VAE)是一种生成模型,结合了自动编码器和概率图模型的思想。它能够学习数据的潜在表示,并且可以用于生成新的样本。

在许多实现中,变分自动编码器的损失与论文中的符号相反,是因为在实际实现中,为了提高计算效率和数值稳定性,常常使用了一些技巧来简化计算过程。

在论文中,变分自动编码器的损失函数可以表示为:

L(θ,φ;x) = -E[log p(x|z)] + KL(q(z|x)||p(z))

其中,θ表示生成模型的参数,φ表示推断模型的参数,x表示输入数据,z表示潜在变量。第一项是重构误差,衡量了生成模型重构输入数据的能力;第二项是正则项,衡量了推断模型与先验分布之间的差异。

然而,在实际实现中,为了简化计算,常常使用重参数化技巧来近似计算梯度。这会导致损失函数中的符号发生变化,变为:

L(θ,φ;x) = E[-log p(x|z)] + KL(q(z|x)||p(z))

可以看到,重构误差的符号发生了变化。这是因为在实际计算中,为了使用反向传播算法进行梯度更新,需要将梯度传递到生成模型和推断模型中。而重参数化技巧将潜在变量z表示为一个确定性函数和一个随机噪声项的乘积,使得梯度能够通过随机噪声项传递。但是,这也导致了重构误差的符号变化。

尽管损失函数中的符号发生了变化,但是实际上,优化过程仍然能够有效地学习到数据的潜在表示。因此,这种符号的变化并不影响变分自动编码器的性能和应用。

腾讯云提供了一系列与变分自动编码器相关的产品和服务,例如:

  1. 云服务器(Elastic Cloud Server,ECS):提供灵活可扩展的计算资源,用于部署和运行变分自动编码器模型。
  2. 云数据库(TencentDB):提供高性能、可扩展的数据库服务,用于存储和管理变分自动编码器的训练数据和模型参数。
  3. 人工智能平台(AI Lab):提供丰富的人工智能开发工具和算法库,用于支持变分自动编码器的开发和应用。
  4. 视频智能分析(Video Intelligence):提供基于深度学习的视频分析服务,可用于变分自动编码器在视频处理和分析领域的应用。

更多关于腾讯云产品和服务的详细信息,请参考腾讯云官方网站:https://cloud.tencent.com/

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • IEEE T CYBERNETICS | 用对抗训练的方法学习图嵌入

    今天给大家介绍莫纳什大学Shirui Pan等人在 IEEE Transactions on Cybernetics上发表的文章“Learning Graph Embedding With Adversarial Training Methods ”。图嵌入的目的是将图转换成向量,以便于后续的图分析任务,如链接预测和图聚类。但是大多数的图嵌入方法忽略了潜码的嵌入分布,这可能导致在许多情况下较差的图表示。本文提出了一个新的对抗正则化图嵌入框架,通过使用图卷积网络作为编码器,将拓扑信息和节点内容嵌入到向量表示中,从向量表示中进一步构建图解码器来重构输入图。对抗训练原则被应用于强制潜码匹配先验高斯分布或均匀分布。实验结果表明可以有效地学习图的嵌入。

    01

    开发 | 深度学习自动编码器还能用于数据生成?这篇文章告诉你答案

    AI 科技评论按:本文作者廖星宇,原载于作者知乎专栏,经授权发布。 什么是自动编码器 自动编码器(AutoEncoder)最开始作为一种数据的压缩方法,其特点有: 跟数据相关程度很高,这意味着自动编码器只能压缩与训练数据相似的数据,这个其实比较显然,因为使用神经网络提取的特征一般是高度相关于原始的训练集,使用人脸训练出来的自动编码器在压缩自然界动物的图片是表现就会比较差,因为它只学习到了人脸的特征,而没有能够学习到自然界图片的特征; 压缩后数据是有损的,这是因为在降维的过程中不可避免的要丢失掉信息; 到

    04

    深度学习自动编码器还能用于数据生成?这篇文章告诉你答案

    什么是自动编码器 自动编码器(AutoEncoder)最开始作为一种数据的压缩方法,其特点有: 跟数据相关程度很高,这意味着自动编码器只能压缩与训练数据相似的数据,这个其实比较显然,因为使用神经网络提取的特征一般是高度相关于原始的训练集,使用人脸训练出来的自动编码器在压缩自然界动物的图片是表现就会比较差,因为它只学习到了人脸的特征,而没有能够学习到自然界图片的特征; 压缩后数据是有损的,这是因为在降维的过程中不可避免的要丢失掉信息; 到了2012年,人们发现在卷积网络中使用自动编码器做逐层预训练可以训练

    06

    神奇!无需数据即可进行机器翻译操作

    在日常工作中,深度学习正在被积极地使用。与其他机器学习算法不同的是,深度网络最有用的特性是,随着它获得更多的数据,它们的性能就会有所提高。因此,如果能够获得更多的数据,则可以预见到性能的提高。 深度网络的优势之一就是机器翻译,甚至谷歌翻译现在也在使用它们。在机器翻译中,需要句子水平的并行数据来训练模型,也就是说,对于源语言中的每句话,都需要在目标语言中使用翻译的语言。不难想象为什么会出现这样的问题。因为我们很难获得大量的数据来进行一些语言的配对。 本文是如何构建的? 这篇文章是基于“只使用语料库来进行无监督

    06

    自动编码器及其变种

    三层网络结构:输入层,编码层(隐藏层),解码层。   训练结束后,网络可由两部分组成:1)输入层和中间层,用这个网络对信号进行压缩;2)中间层和输出层,用这个网络对压缩的信号进行还原。图像匹配就可以分别使用,首先将图片库使用第一部分网络得到降维后的向量,再讲自己的图片降维后与库向量进行匹配,找出向量距离最近的一张或几张图片,直接输出或还原为原图像再匹配。   该网络的目的是重构其输入,使其隐藏层学习到该输入的良好表征。其学习函数为 h(x)≈x h ( x ) ≈ x h(x) \approx x。但如果输入完全等于输出,即 g(f(x))=x g ( f ( x ) ) = x g(f(x)) = x,该网络毫无意义。所以需要向自编码器强加一些约束,使它只能近似地复制。这些约束强制模型考虑输入数据的哪些部分需要被优先复制,因此它往往能学习到数据的有用特性。一般情况下,我们并不关心AE的输出是什么(毕竟与输入基本相等),我们所关注的是encoder,即编码器生成的东西,在训练之后,encoded可以认为已经承载了输入的主要内容。   自动编码器属于神经网络家族,但它们与PCA(主成分分析)紧密相关。尽管自动编码器与PCA很相似,但自动编码器比PCA灵活得多。在编码过程中,自动编码器既能表征线性变换,也能表征非线性变换;而PCA只能执行线性变换。

    01
    领券